CASCON 2020 Proceedings

Sponsored By
IBM Centre for Advanced Studies

IBM Canada Lab

Edited By

Lily Shaddick - IBM Canada Ltd.
Guy-Vincent Jourdan — University of Ottawa
Vio Onut - IBM Canada Ltd.

Tinny Ng - IBM Canada Ltd.

Toronto, Ontario, Canada November 10 - November 13, 2020

Full papers are reproduced here from camera-ready copies prepared by the authors. Permission has been granted to IBM Canada
Ltd. and its related companies, and the Association for Computing Machinery, in each case without charge, to reproduce, distribute
and publish in any medium or distribution technology

Table of Contents

Message from the Conference Chair
Message from the Program Chair
Organizing Committee

Most Influential Paper of 2010

Full Papers
Smart Cities and Health

Multiple Pedestrian Tracking System Based On Modified Mask R-Cnn And
Enhanced Patrticle Filter Using An Adaptive Information Driven Motion

Model For Video Surveillance
Mufleh Al-Shatnawi, Amir Asif, Vida Movahedi, Aijun An, Yonggang Hu and Junfeng Jf Liu

Understanding Brain Dynamics for Color Perception using Wearable EEG

headband

Mahima Chaudhary, Sumona Mukhopadhyay, Marin Litoiu, Lauren E Sergio and Meaghan
S Adams

Towards Interpretable and Maintainable Supervised Learning Using
Shapley Values in Arrhythmia

Sanjena Krishnakumar and Tamer Abdou

Efficient Location-Level Risk Analytics
Neil Burke, Oliver Baltzer and Norbert Zeh

Security

Investigation of Encrypted and Obfuscated Network Traffic Utilizing

Machine Learning
Kay Boldt, Kenneth Kent and Rainer Herpers

54 An Approach to Represent and Transform Application Specific

Constraints for an Intrusion Detection System
Ayesha Barbar, Fahim Imam, Thomas Dean and Jose Fernandez

vii

Xi

Xiv

13

23

33

43

53

63

Blockchain based security for heterogeneous loT systems
Kale Yuzik and Dwight Makaroff

A Survey of Security Vulnerabilities in Ethereum Smart Contracts
Noama Fatima Samreen and Manar Alalfi

Cloud and Database Systems

Towards Topology Aware Elastic Job Scheduling with Deep Reinforcement

Learning
Bon Ryu, Aijun An, Zana Rashidi, Junfeng Liu and Yong Gang Hu

Pred-Cache: A Predictive Caching Method in Database Systems
Omar El Zarif, Safwat Hassan, Ying Zou, Calisto Zuzarte, Vincent Corvinelli and Mohammed
Al Hamid

Software Evaluation Methodology of Node.js Parallelism under Variabilities

in Scalable Systems
Maria Patrou, Jacob Baird, Kenneth Kent and Michael Dawson

The Weakest Link: Revealing and Modeling the Architectural Patterns of

Microservice Applications
Vladimir Podolskiy, Maria Patrou, Panos Patros, Michael Gerndt and Kenneth Kent

Software and Systems Engineering

Report on Evaluation Experiments Using Different Machine Learning

Techniques for Defect Prediction
Marios-Stavros Grigoriou, Kostas Kontogiannis, Alberto Giammaria and Chris Brealey

Moving from Cross-Project Just-In-Time Defect Prediction to

Heterogeneous Just-In-Time Defect Prediction: A Partial Replication Study
Hadi Jahanshahi, Mucahit Cevik and Ayse Basar

Identifying External Cross-References Using Natural Language Processing
Elham Rahmani, Nazim H Madhavji and Ibtehal Noorwali

Time Series Sampling for Probabilistic Forecasting
Nicholas Prayogo, Mucahit Cevik and Merve Bodur

Compilers and Optimizations

Insights into WebAssembly: Compilation Performance and Shared Code
Caching in Node.js

Tobias Niel3en, Kenneth B. Kent, Michael Dawson and Panos Patros.

73

83

93

103

113

123

133

143

153

163

Position Paper: An ELF-based Storage Option for the Eclipse OMR Ahead-

of-Time Compiler 173
Damian Diago D'Monte, Georgiy Krylov, Daryl Maier, Gerhard W. Dueck and Kenneth B.

Kent
MicroJIT: A Case for Templated Just-in-Time Compilation in Constrained 179
Environments
Eric Coffin, Scoft Young, Harpreet Kaur, Julie Brown, Marius Pirvu and Kenneth B. Kent
Designing and Evaluating New Instructions that Accelerate Sigmoid-Based 189

Machine Learning
Lucas Dutton, Curtis D’ Alves, Wolfram Kahl, Robert Enenkel and Christopher K. Anand.

Natural Language Processing

The Effectiveness of Static Word Embeddings on the Classification of IT 198
Support Tickets

Yasmen Wahba, Nazim Madhavji and John Steinbacher

Deep learning approaches to classify the relevance and sentiment of news 207

articles to the economy
Jingli Wang, Ashok Bhowmick, Mucahit Cevik and Ayse Basar

Voting for Authorship Attribution Applied to Dark Web Data 217

Britta Sennewald, Rainer Herpers, Marco Hiilsmann and Kenneth B. Kent

Blockchain, Cryptography, Quantum Computing

Experience Report: Dynamic Reconfiguration of Consensus Protocol for 227
loT Data Registry on Blockchain

Mohammadreza Rasolroveicy and Marios Fokaefs.

Parallel Window Method for Scalar Multiplication in Elliptic Curve 237
Cryptography

Tanya Bouman, Yusra Irfan, James You and Christopher K. Anand

Hybrid Quantum-Classical Problem Solving in the NISQ Era 247
Prashanti Priya Angara, Ulrike Stege, Hausi A Muller and Mehdi Bozzo-Rey

Workshops

Al & Blockchain & Robotics

1st Workshop on AlOps and System Compliance

Marios Grigoriou, Kostas Kontogiannis, Chris Brealey and Alberto Giammaria

Automation, Control, and Analysis of Knowledge-intensive Processes
Arik Senderovich, Eric Yu, Hajo Reijers, Allen Chen and Sebastian Carbajales

Deploying a Collaborative Framework for Crowd Sourcing the Evaluation

of Al Model Effectiveness
Sarah Packowski and Joshua Allard

How has COVID-19 changed the development and adoption of data

science across firms and industries?
Michelle Alexopoulos, Kelly Lyons, Rohan Alexander, Aije Egwaikhide and Robert Frost

Cloud Computing

4th Workshop on Advances in Open Runtimes and Cloud Performance

Technologies
Daryl Maier, Vijay Sundaresan and David Bremner

Jumpstart your application into a reactive event-centric world
Grace Jansen, Yk Chang, Gilbert Kwan and Meswan Bhaugeerutty

Systems & Innovations

morPORP: A fast and granular agent-based model of COVID-19 to examine

school mitigation strategies in Newfoundland & Labrador
Dionne Aleman, Benjamin Tham, Sean Wagner, Justin Semelhago, Asghar Mohammadli,
Paul Price, Jordan Bradfield, Randy Giffen and Proton Rahman

Novel hardware & software design for mathematical and Al acceleration
Robert Enenkel, Christopher K. Anand, Silvia M Mueller and Jose Moreira

Z Modernization Open Tools Showcase
Nitika Sharma, Steve Shao and Stephanie Kuan

loT & Smart Cities

Smart Cities with Smart Al to fight back COVID19 262

Hina Sharma

254

256

259

260

262

263

285

268

270

272

Quantum Computing

Quantum Computing: Synergies and Opportunities 275
Mehdi Bozzo-Rey, Robert Loredo, Ulrike Stege and Hausi Muller

IBM Advanced Studies CASCON 278

vi

Message from the Conference Chair

CASCON x EVOKE 2020

vii

Message from the Conference General Chair

Welcome to CASCON x EVOKE 2020!
Happy 30" Anniversary!

For the past 30 years, IBM Centre for Advanced Studies (CAS) has been hosting the
Annual International Conference on Computer Science and Software Engineering. This
conference is a testimony to our commitment to Academia and Applied Research in
Canada. In 2019 we joined forces with the EVOKE conference, which created a unique
Industry-Academic conference. Through this partnership, we can bring together the
worlds of academia, research, development, and every industry for a four-day marathon
to discuss research and technology, exciting challenges, achievements and success
stories. We continue this journey in 2020 and beyond.

Our conference follows all the academic rigour of selecting and screaming its
content, including academic talks, industry talks, workshops, networking, and the Expo.
In 2020 we have four keynote speakers, 26 academic talks, 64 industry talks, 29
workshops, and 47 expo presentations contributed by 143 university researchers
and 180 industry professionals. As with previous years, the proceedings, including
the technical papers, position papers, and detailed workshop abstracts, are also
available online in the ACM Digital Library.

Whether we are coming from industry or academia, we all have a common goal and
interest in technology. Technology breakthroughs are what we strive for, the technology
that can make a difference, that is innovative, unique, solve unsolved problems and
establishes us as leaders.

This year's theme, VISION, UNITY, INNOVATION, couldn’t be timelier. With the new
world-wide pandemic crisis that hit hard on industry and academia, the need for
innovation is even more acute. With this new challenge, the society had to adapt to
social distancing and new virtual environments that will continue to be the real norm for
at least a while. While CASCON x EVOKE participants will not be able to participate
in person this year, we see an opportunity to create a higher digital footprint for our
conference, to reach an audience across Canada and the world that is a click of a
button away from us. Looking at 2021 and beyond, we believe that a hybrid approach
will become the norm for our conference. We know our community values an in-person
event. Unfortunately, we can not offer that this year; however, we are committed to
providing alternative virtual networking sessions and an engaging online environment
that will foster serendipitous and spontaneous technical discussions.

viii

We packed full a four-day schedule with six parallel tracks on eight main technological
themes: Cloud Computing; Everything Data, 10T & Smart Cities; Security & Privacy;
Quantum; Systems & Innovations; Compilers, Languages, Runtimes; Al; and Software
Engineering. | am confident that you will find the technical content exciting and engaging.

None of these would be possible without our dedicated community of academics, IBMers
and partners. As Conference General Chair, | am fortunate to be immersed in an
exceptional team of professionals that make that vision come true. | want to start by
thanking the Canada Lab Director, Mr. Steven Astorino, for his thought leadership and
his aspiration to create one of Canada’s best industry-academic conference. The
partnership with the EVOKE conference is now in his second year and growing stronger
because of him. Equally important is the support and leadership of Mr. Marcellus Mindel,
Head of IBM Canada Advanced Studies, whose understanding and direction significantly
impact the conference.

A robust academic conference relies upon the expertise and guidance of a Steering
Committee. Big thank you to the CASCON Steering Committee members (Prof. Guy-
Vincent Jourdan, Prof. Hausi Muller, Mr. Joe Wigglesworth, Prof. Ken Wong, Prof.
Kenneth Kent, Mr. Marcellus Mindel, Prof. Marin Litoiu, Dr. Robert Enenkel, and Mrs.
Tinny NQ)

Prof. Julia Rubin, University of British Columbia, acted this year as Conference Program
Chair. She has positively impacted the content this year, working tirelessly to orchestrate
the paper submissions, revisions, and paper awards for our conference. A big thank you
to the 86 Program Committee members who diligently peer-reviewed the papers and
selected the top candidates.

Prof. Guy-Vincent Jourdan, Publication Chair, and Ms. Lily Shaddick, Conference
Proceedings Editor, diligently took care of our proceedings and ensured that all content
was filtered, approved and published in the ACM Library.

For the first time in our conference history, we have the Industry track shaped by Chairs.
Mr. Joe Wigglesworth and Dr. Michael Kwok raised to the challenge and formed the
Industry Talks Agenda. Special thanks go to the EVOKE Foundation team for their
invaluable expertise, enabling us to have a solid Industry Track: Mr. Patrick Kasebzarif,
Executive Producer, Ms. Loren Amaral, Creative Lead, Mr. Matthew Di Liddo, Program
Lead and Mr. Andrew Kelly, Partnership Lead.

For the third year in a row, we have the privilege of having Mrs. Tinny Ng, IBM, joined this
year by Prof. Ken Wong from the University of Alberta acting as Workshop Co-Chairs. |
want to thank them both for preparing a rich program consisting of top workshops. | extend
this thank you note to the Workshop Selection Committee members for making sure that
the best workshops are accepted.

CASCON Technology Expo is the collaboration hub of the conference. With 47 technical
exhibits and new content that is changing daily. Accomplished under the leadership of
our Expo co-chairs Prof. J. Nelson Amaral from the University of Alberta and Dr. Kit
Barton, IBM.

Special thanks to our IBM CAS Canada Team for all the heavy lifting that goes behind
the scenes and often is unnoticed but without which nothing is possible: Mr. Dennis
Buttera, Mrs. Jennifer Collins, Ms. Maria Gallaher, Mrs. Tinny Ng, and for our exceptional
group of interns Ms. Aysha Anwar, Ms. Maxine Arbez Cheung, Mr. Sandy Bagga, Mr. Ali
Hosny Hamdy, Mr. Gursehaj Harika, Mr. Alexander Mah, Ms. Alix Mailhot, Ms. Tima
Pakfetrat, Ms. Maria Katrina Ronquillo, Ms. Lily Shaddick, and Mr. Kevin Yu.

| want to thank all the volunteers and Prof. Marin Litoiu (Volunteer Chair) for all the
conference support. Big thank you to our Virtual Platform Admin team who made the
virtual experience possible: Ms. Katina Kelly, Mr. Matthew Luzius, Mr. Chris Kale, Ms.
Christine Gokool, Ms. Corey Gray, Ms. Diane Beauvais, Mr. Madni Ahmed, Mr. Michael
Keillor, Ms. Sonia Singh, Mr. Ali Hosny Hamdy, Mr. Gursehaj Harika, Mr. Kevin Yu, Ms.
Aysha Anwar and Ms. Lily Shaddick.

Finally, 1 would personally like to thank all the persons that submitted content to
our conference and all our CAS Collaborators for promoting and contributing to this

event. Finally, a big thank you to all CASCONXEVOKE participants for all the idea
exchanges and thoughtful discussions during the conference.

| wish you all a wonderful and productive time at CASCONxEVOKE 2020!

losif-Viorel (Vio) Onut, Ph.D.,

/“/ | Vid /1[(/ 72l
¢

Conference General Chair | CASCON 2020
Principal R&D Strategist | Centre for Advanced Studies | IBM Canada Lab
Adjunct Professor | University of Ottawa

Message from the Program Chair

CASCON x EVOKE 2020

xi

Message from the Program Chair
CASCON x EVOKE 2020

Welcome to CASCON x EVOKE 2020, the 30th Annual International Conference on Com-
puter Science and Software Engineering hosted by the IBM Centre for Advanced Studies
(CAS) and EVOKE Foundation!

The theme of CASCON x EVOKE 2020 is VISION, UNITY, INNOVATION. This year we re-
ceived a total of 65 technical paper submissions. Each paper was rigorously reviewed by at
least three members of the Program Committee. In the end, the Program Committee mem-
bers decided to accept 26 papers (40% acceptance rate). The Program Committee also se-
lected the papers that received the Best Paper and the Best Student Paper awards. The
CASCON x EVOKE 2020 Best Paper Award goes to authors Britta Sennewald, Rainer Her-
pers, Marco Hulsmann, and Kenneth B. Kent for their paper, Voting For Authorship Attribu-
tion Applied To Dark Web Data. The Best Student Paper Award goes to student author San-
jena Krishnakumar for the paper, Towards Interpretable And Maintainable Supervised Learn-
ing Using Shapley Values In Arrhythmia, co-authored with supervisor Tamer Abdou.

We are extremely happy to have four fantastic keynote speakers, Andrew Pelling from the
University of Ottawa; Alexandre Blais, form the Universitaire de Sherbrooke; Nicolas Paper-
not from the University of Toronto; and Niina Haiminen from T.J. Watson IBM Research Lab,
USA, who will talk about cutting-edge work in biomaterial, quantum computing, security, and
computational biology. Thank you for your thought-provoking talks!

The program of the conference is organized into eight tracks: Cloud Computing; Everything
Data, loT & Smart Cities; Security & Privacy; Quantum; Systems & Innovations; Compilers,
Languages, Runtimes; Al; and Software Engineering. As in previous years of CASCON, the
CASCON x EVOKE 2020 proceedings are archived in the ACM Digital Library for ease of
access.

One highlight of the conference planning process is the selection of the Most Influential Pa-
per, which is awarded to a paper published a decade earlier at CASCON, in order to recog-
nize the lasting contributions and impact of such paper to theory and practice. Selecting the
Most Influential Paper is a process that takes into account several factors. These factors in-
clude the impact the paper and its corresponding research had in the subject area, the evolu-
tion and significance of the topics discussed in the paper during the past decade, and the
consequent work spawned by the paper.

The CASCON x EVOKE 2020 Most Influential Paper of 2010 was selected by the MIP Selec-
tion Committee, consisting of Ettore Merlo, Ecole Polytechnique de Montréal; Joe Wiggles-
worth, IBM Canada; Hausi Muller, University of Victoria; Kostas Kontogiannis, Western Uni-
versity; Robert Enenkel, IBM Canada; and Julia Rubin, University of British Columbia (chair).

Xii

The committee followed a selection process similar to that established in previous years of
CASCON: first, a list of CASCON 2010 papers, with their citation counts, types of citations,
related work conducted during the past decade, and evolution and significance of the areas
each, were collected and six papers were short-listed. Each committee member reviewed the
short-listed papers and then the members conferred to discuss and debate each candidate
paper.

After the detailed discussion, the committee selected the Most Influential Paper for this year,
which was awarded to the paper “Improving Program Navigation With an Active Help Sys-
tem” by Petcharat Viriyakattiyaporn and Gail C. Murphy. The committee considered the pa-
per visionary and paving the way for other researchers to work in the area of recommender
systems. This work also provided foundations for future DevOps and Al-Ops tools. | would
like to congratulate the authors for their outstanding contribution and thank the MIP Award
Committee for their work reviewing and deliberating candidates for the award.

| am also immensely grateful to the many people who helped and supported us in organizing
CASCON x EVOKE 2020. | would like to thank all the authors of technical papers and the
hard-working members of the Program Committee for their dedication to excellence in com-
pleting the reviews and engaging in online discussion of the submissions. A special thank
you goes to the CASCON x EVOKE 2020 organizing team, including Vio Onut, the general
chair of the conference; Tinny Ng and Ken Wong, who coordinated the workshop selection;
Kit Barton and J. Nelson Amaral, who orchestrated the technology expo selection; Joe Wig-
glesworth and Michael Kwok, who coordinated the industry talks; Guy-Vincent Jourdan, who
assembled the proceedings; Marin Litoiu who organized the student volunteers; Lily Shad-
dick, who was the publication lead; and Tinny Ng, who kept the conference website up-to-
date. Finally, | would like to thank the CASCON Steering Committee for their valuable sup-
port towards compiling this year’s program.

Even though CASCON x EVOKE 2020 is a fully online event this year, we plan on plenty of
inspiring discussions, networking events, and interactions. | wish you a wonderful experience
at the conference.

Welcome to CASCON x EVOKE 2020!

Julia Rubin
The University of British Columbia, Vancouver, Canada
CASCON x EVOKE | 2020 Program Chair

xiii

Organizing Committee

CASCON x EVOKE 2020

Organizing Committee

Conference Chair

losif Viorel Onut

Conference Program Chair
Julia Rubin

Industry Talks Co-Chairs

Joe Wigglesworth
Michael Kwok

Workshops Co-Chairs
Ken Wong
Tinny Ng

Exhibits Co-Chairs
Kit Barton

J. Nelson Amaral

Finance and Registration Chair

Marcellus Mindel

Website Chair
Tinny Ng

Volunteer Chair

Marin Litoiu

Publication Chair

Guy-Vincent Jourdan

Conference Proceedings Editor

Lily Shaddick

IBM Canada Ltd.

University of British Columbia

IBM Canada Ltd.
IBM Canada Ltd.

University of Alberta
IBM Canada Ltd.

IBM Canada Ltd.
University of Alberta

IBM Canada Ltd.

IBM Canada Ltd.

York University

University of Ottawa

IBM Canada Ltd.

XV

Executive Producer

Patrick Kasebzarif

Program Lead
Matthew Di Liddo

Partnership Lead
Andrew Kelly

Creative Co-Lead
Loren Amaral

Sandy Bagga

Steering Committee

Marin Litoiu

Marcellus Mindel

Hausi Muller

Tinny Ng

losif Viorel Onut

Joe Wigglesworth

Ken Wong

Robert Enenkel

Guy-Vincent Jourdan Kenneth
Kent

Program Committee

Julia Rubin
Jose Nelson Amaral
Christopher K. Anand Giuliano

Antoniol

Evoke Canada

Evoke Canada

Evoke Canada

Evoke Canada

IBM Canada Ltd.

York University

IBM Canada Ltd.
University of Victoria
IBM Canada Ltd.
IBM Canada Ltd.
IBM Canada Ltd.
University of Alberta
IBM Canada Ltd.
University of Ottawa

University of New Brunswick

University of British Columbia, Program Chair
University of Alberta
McMaster University

Ecole Polytechnique de Montréal

XVi

Akramul Azim
Ebrahim Bagheri
Ayse Bener

Jeremy Bradbury
Paula Branco

David Bremner
Sebastian Carbajales
Allen Chan
Yee-Kang Chang

Alexander Chatzigeorgiou

Marsha Chechik
Tse-Hsun Peter Chen
Mark Chignell
Andrew Craik

Eyal De Lara

Renato De Mori
Thomas Dean

Frank Dehne

Chen Ding

Juergen Dingel
Gerhard Dueck
Ghizlane El Boussaidi
Robert Enenkel
Marios Fokaefs
James Green

Hadi Hemmati

Reid Holmes

Daging Hou
Guy-Vincent Jourdan
Wolfram Kahl

Foutse Khomh
Kostas Kontogiannis
Diwakar Krishnamurthy
Michael Kwok

University of Ontario Institute of Technology
Ryerson University

Ryerson University

University of Ontario Institute of Technology
University of Ottawa

University of New Brunswick

IBM Canada Ltd

IBM Canada Ltd

IBM Canada Ltd

University of Macedonia
University of Toronto

Concordia University

University of Toronto

IBM Canada Ltd

University of Toronto

McGill University

Queen's University

Carleton University

University of Rochester

Queen's University

University of New Brunswick
Ecole de technologie supérieure
IBM Canada Ltd

Ecole Polytechnique de Montréal
Carleton University

University of Calgary

University of British Columbia
Clarkson University

University of Ottawa

McMaster University

Ecole Polytechnique de Montréal
University of Western Ontario
University of Calgary

IBM Canada Ltd

xvii

Alexei Lapouchnian
Diana Lau

Timothy Lethbridge
Jin Li

Sam Lightstone
Ramiro Liscano
Marin Litoiu

Hanan Lutfiyya
Kelly Lyons

Nazim Madhaviji
Daryl Maier

Ettore Merlo

Piotr Mierzejewski
James Miller
Andriy Miranskyy
Marc Moreno Maza
Hausi Muller

John Mylopoulos
V. Krishna Nandivada
Maleknaz Nayebi
Manos Papagelis
Panos Patros

Fred Popowich
Shaikh Quader
Suprio Ray

Tony Renaud
Juergen Rilling
Chanchal K. Roy
Mohammad Sadoghi
Ken Salem

Vivek Sarkar
Mohammed Sayagh
Jun Shirako
Michael Smit

University of Toronto

IBM Canada Ltd

University of Ottawa
PointClickCare

IBM Canada Ltd

University of Ontario Institute of Technology
York University

University of Western Ontario
University of Toronto

University of Western Ontario
IBM Canada Ltd

Ecole Polytechnique de Montréal
IBM Canada Ltd

University of Alberta

Ryerson University

University of Western Ontario
University of Victoria

University of Toronto

[IT Madras

Ecole Polytechnique de Montréal
York University

University of Waikato

Simon Fraser University

IBM Canada Ltd

University of New Brunswick
IBM Canada Ltd

Concordia University
University of Saskatchewan
University of California
University of Waterloo

Georgia Institute of Technology
Queen's University

Georgia Institute of Technology

Dalhousie University

Xviii

Ulrike Stege
Mark Stoodley
Vijay Sundaresan
Jaroslaw Szlichta
Ladan Tahvildari
Alex Thomo
Whitney Tsang
Norha M. Villegas
Paul Ward

Joe Wigglesworth
Murray Woodside
Morteza Zihayat
Farhana Zulkernine

Calisto Zuzarte

MIP Selection Committee
Ettore Merlo

Hausi Muller

Joe Wigglesworth

Julia Rubin

Robert Enenkel

Kostas Kontogiannis

Xix

University of Victoria
IBM Canada Ltd

IBM Canada Ltd
University of Ontario Institute of Technology
University of Waterloo
University of Victoria
IBM Canada Ltd
Universidad Icesi
University of Waterloo
IBM Canada Ltd
Carleton University
Ryerson University
Queen's University
IBM Canada Ltd

Ecole Polytechnique de Montréal
University of Victoria

IBM Canada Ltd.

University of British Columbia
IBM Canada Ltd.

Western University

Most Influential Paper of 2010

CASCON x EVOKE 2020

Improving Program Navigation with an Active Help System

Petcharat Viriyakattiyaporn and Gail C. Murphy
Department of Computer Science
University of British Columbia

Abstract

When performing software change tasks, software developers spend a substantial amount of their time
navigating dependencies in the code. Despite the availability of numerous tools to aid such naviga-tion,
there is evidence to suggest that developers are not using these tools. In this paper, we intro-duce an
active help system, called Spyglass, that suggests tools to aid program navigation as a devel-oper works.
We report on the results of a laboratory study that investigated two questions: will develop-ers act upon
suggestions from an active help sys-tem and will those suggestions improve developer behaviour? We
found that with Spyglass we could make developers as aware of navigational tools as they are when
requested to read a tutorial about such tools, with less up-front effort. We also found that we could
improve developer behaviour as de-velopers in the Spyglass group, after being given recommendations
in the context of their work, nav-igated programming artifacts more efficiently than those in the tutorial

group.

Find the full paper at https://dl.acm.org/doi/10.1145/1923947.1923951

Copyright (© 2010 Petecharat Viriyakattiyaporn and Gail C. Murphy. Permission to copy is hereby granted provided the
original copyright notice is reproduced in copies made.

Full Papers

CASCON x EVOKE 2020

Multiple Pedestrian Tracking Based on Modified Mask R-CNN
and Enhanced Particle Filter using an Adaptive Information
Driven Motion Model

Mufleh Al-Shatnawi
Amir Asif

mufleh@eecs.yorku.ca
asif@eecs.yorku.ca
York University
Toronto, Ontario, Canada

Vida Movahedi
Aijun An
vida@eecs.yorku.ca
aan@eecs.yorku.ca
York University
Toronto, Ontario, Canada

Yonggang Hu
Junfeng Liu
yhu@ca.ibm.com
jfliu@ca.ibm.com
IBM Canada Ltd
Markham, Ontario, Canada

Figure 1: The motion of some pedestrians from PETS2009S2L1-View1 [13] and EPFL-terrace [14] datasets where the trajectory
for each pedestrian marked by different color. This figure shows that the motion of pedestrians is highly dynamic, as they are
often stopping, moving backward, or turning in circles.

ABSTRACT

In the recent years, multiple pedestrian tracking (MPT) has been one
of the most important components in a wide range of applications
in computer vision, such as video surveillance, traffic monitoring,
and sports analysis, to name a few. In these applications, the scene
is in continuous motion hence typical tracking systems that are
using background modeling and handcrafted features fail to detect
pedestrians efficiently. Furthermore, the scene in these applications
shifts between random and continuous pedestrian motion. Most of
the existing MPT algorithms based on particle filters assume that
the motion of pedestrians is mostly or piecewise linear and pre-
dictable. Hence, these tracking algorithms adopt a linear constant
velocity motion model for pedestrian tracking. However, the motion
of some pedestrians is highly dynamic, as they are often stopping,
moving backward, or turning around in real-world surveillance
video. To overcome these problems, we propose an approach for
multiple pedestrian tracking that can be divided into two main
components: detection and tracking. For the detection component,
we combine novel post-processing steps with the Mask Region
Convolutional Neural Network (Mask R-CNN) to identify multiple
pedestrians in a given video frame. For the tracking component, we

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CASCON’20, November 10-13, 2020, Toronto, Canada

© 2020 Copyright held by the owner/author(s).

propose a robust MPT algorithm using enhanced particle filtering
with an adaptive information driven motion model and resampling
scheme. The proposed tracking algorithm is suitable for online
and real-time applications. Since data association is a key issue
in tracking-by-detection schemes, we propose a combination be-
tween an efficient adaptive information driven motion model and a
new resampling scheme that retains information pertaining to the
weighted particles during the particle propagation and resampling
steps. Experimental results show the benefits of using the proposed
post-processing steps and the adaptive information driven motion
model for detecting and tracking pedestrians with unpredictable
movements. Moreover, the tracking accuracy and precision are sig-
nificantly improved, and the number of tracker identification (ID)
switches is reduced simultaneously.

CCS CONCEPTS

« Computing methodologies — Tracking; Object detection;
Object identification.

KEYWORDS

Multiple pedestrian tracking, particle filter, tracking-by-detection,
data association, resampling.

ACM Reference Format:

Mufleh Al-Shatnawi, Amir Asif, Vida Movahedi, Aijun An, Yonggang Hu,
and Junfeng Liu. 2020. Multiple Pedestrian Tracking Based on Modified Mask
R-CNN and Enhanced Particle Filter using an Adaptive Information Driven
Motion Model. In CASCON’20 Novem-ber 10—13, 2020, Toronto, ON. , 9

pages.

CASCON’20, November 10-13, 2020, Toronto, Canada

1 INTRODUCTION

Multiple Pedestrian tracking (MPT) system is an important com-
ponent in a wide range of applications in computer vision, such as
video surveillance, traffic monitoring, and sports analysis, to name
a few. Visually, it is quite easy and intuitive for humans to see other
humans, recognize or track their actions. However, designing and
building an automatic MPT system without any human interven-
tion is a challenging task. There are many sources of uncertainty
that effect MPT systems, such as irregular pedestrian motion, clut-
ter, changing backgrounds, significant occlusions, and pedestrians
being identical in their appearance.

In MPT systems, tracking-by-detection is regarded as a most
popular tracking paradigm wherein the tracking performance is
dependent on the detection quality. Despite efforts to generate
accurate and reliable pedestrian detections, it is still a challeng-
ing task for researchers to develop a perfect Multiple Pedestrian
Detector (MPD). Normally, MPDs produce both a bounding box
and confidence score for each detected pedestrian in a given video
frame. The confidence score represents the confidence level of the
detector in affirming that the object enclosed by the bounding box
is a person/pedestrian.

The traditional approach for pedestrian detection is based on
background-subtraction [3, 8, 23, 33]. In this approach, pedestrians
are detected in every frame by segmenting the moving objects
out of the background, while taking into account pixel-wise time
consistency. However, the background-subtraction methods are
unreliable and error-prone in noisy video sequences. For instance,
the background-subtraction methods detect all moving objects in
the scene even these that are not pedestrians [3, 8, 23, 33]. In recent
years, multiple pedestrian detection (MPD) methods have been
developed either by using a deep Convolutional Neural Network
(CNN), or by building a specific pedestrian detector added to these
networks [18, 19, 28, 39, 40]. These CNN MPD methods are able to
learn discriminative features directly from raw pixels of an image,
and they are producing a confidence score between zero and one
for the detected pedestrians. Hence, these methods have notable
performance gains over the background-subtraction methods, and
they normally provide a high detection accuracy [40].

Given the initial state (e.g., position and size) of a target pedes-
trian in the reference video frame, the objective of a tracking algo-
rithm is to build a posterior probability distribution for the state of
the tracked target using noisy detections (observations). Although
many tracking algorithms have been developed over the years, the
particle filter (PF) [17] based MPT approaches [6, 15, 16, 24, 29,
31, 34, 36, 38] have shown more promise. The PF operates on the
principle of approximating the posterior state distribution by a set
of weighted samples, also referred to as particles [4]. Traditional
PF approaches suffer from the degeneracy problem [17], wherein
after a few iterations, except for a few particles all the others have
negligible weights. This problem is overcome using the resampling
procedure, which represents the posterior by a new set of parti-
cles [4, 9, 22, 25, 30]. Consequently, the PF has also been termed as
the sequential importance resampling (SIR) filter.

Al-Shatnawi and Asif, et al.

() (b) (©

Figure 2: Three consecutive frames: (a) Frame 708, (b) Frame
709, and (c) Frame 710 as taken from the MOT17-05 video se-
quence [27]. The KDNT [39] detector detects the same pedes-
trian with three different confidence scores in successive
frames.

2 RELATED WORK
2.1 CNN For MPD Methods

In recent years, multiple pedestrian detection (MPD) methods have
been developed either by using a deep Convolutional Neural Net-
work (CNN), or by building a specific pedestrian detector added
to these networks [18, 19, 28, 39, 40]. In [28], a pedestrian detec-
tor is proposed by using the Faster Region Convolutional Neural
Network (Faster-RCNN). The Faster-RCNN can be represented as
an end-to-end framework that consists of two sub-CNN networks.
The first network extracts features and proposes regions for the
second network which in turns classifies the object in the proposed
relevant regions. The Faster-RCNN parameters are shared between
these two networks and constitute an efficient framework for object
detection in general. Furthermore, the Faster R-CNN can be viewed
as a CNN based MPD without using any hand-crafted features.
The confidence scores of the reported pedestrian detections were
between 0.05 and 1.0. In [39], another MPD based approach is devel-
oped by using a combination of an additional convolutional neural
network and the Faster R-CNN [28]. The additional network is
used to calculate the appearance descriptor value for each detected
bounding box. The calculated value is then used to determine the
data association metric for later stages. The confidence scores of
the reported pedestrian detections were between 0.0990 and 0.9998.

In [18], a flexible and efficient framework for instance segmen-
tation and object detection is developed using Mask R-CNN. The
Mask R-CNN [18] adds a branch to predict segmentation masks in
parallel to the existing branches in Faster R-CNN [28] for classifi-
cation and bounding box regression. Therefore, the Mask R-CNN
consists of three parts: feature pyramid network (FPN), regional
proposal network (RPN), and detection. Hence, the Mask R-CNN
can perform three tasks: object recognition, detection, and segmen-
tation.

In general, MPDs apply some constraints on the reported bound-
ing boxes to improve the performance (i.e. accuracy and precision).
The two most common constraints are the bounding box area/size

MPT Based on Modified Mask R-CNN and Enhanced PF using an AIDM Model

CASCON’20, November 10-13, 2020, Toronto, Canada

(@ (b) (©

Figure 3: Same as Figure 2 except for the detection of a dif-
ferent pedestrian using the FRCNN [28] detector. Three con-
secutive frames: (a) Frame 666, (b) Frame 667, and (c) Frame
668 as taken from the MOT17-05 video sequence [27]. As was
the case for the KDNT detector, the FRCNN detector detects
the same pedestrian with three different confidence scores
in successive frames.

and the bounding box confidence score. In [5], CNN MPD is used
to detect pedestrians in a given video frame, wherein the detected
bounding boxes with confidence score greater than 0.5 are accepted
as true positive. In [7], a fixed threshold for upper confidence is
used to create a confidential detection set, wherein detections with
low confidence scores are removed from the original detection set
at first step. In [10], fixed thresholds for upper and lower confidence
scores are used and a sparse optical flow filter is applied to enhance
the quality of detections, wherein the upper and lower confidence
score thresholds are fixed for all frames in a given video.

In contrast, applying a lower confidence threshold on the re-
ported bounding boxes to detect all existing pedestrians in the
video frames at the cost of increasing the number of false positive
detections. This is the case for KDNT [39] and FRCNN [28] where
all detected bounding boxes are reported. It should be noted that
the same person can appear very differently during its presence in
a given video depending on the changes in the background, local
illumination, contrast, etc. Thus, the same person may be detected
with different confidence scores in two consecutive frames. There-
fore, applying upper or lower confidence score thresholds is not a
desirable a approach, because the threshold value may vary during
a given video or over different videos. Furthermore, most of the
CNN MPD methods, mentioned above, and some other MPDs gen-
erate pedestrian detections for each frame independently, ignoring
inter-frame relationships that exist between consecutive frames. It
should be noted that if a pedestrian is present in a frame at time
t — 1 with a high confidence score it will most likely be present in
the next frame at time t. For the purpose of illustration, Figure 2
shows that KDNT [39] detects the same pedestrian with three differ-
ent confidence scores in three consecutive frames. Figure 3 shows
similar example for the FRCNN [28] detector. In addition, Figure 4
shows that the Mask R-CNN [18] detects two different pedestrians
with single bounding box at a middle frame given that it was able
to detect them correctly before and after that middle frame. In this
paper, for pedestrian detection component, we develop an efficient

() (b) (©

Figure 4: Three consecutive frames: (a) Frame 311, (b) Frame
312, and (c) Frame 313 are taken from PETS2009S2L1-View1
video sequence. In (b), the Mask R-CNN [18] detects two
pedestrians with single bounding box despite the fact that
it detects them correctly before (in (a)) and after (in (c)).

online method to detect multiple pedestrians from a video stream
by integrating the Mask R-CNN [18] with the post-processing steps
proposed in [2] to improve the performance of the Mask R-CNN
for multiple pedestrian detections.

2.2 Particle Filter For MPT Algorithms

Many tracking algorithms have been developed over the years, the
particle filter (PF) [17] based MPT approaches [6, 15, 16, 24, 29,
31, 34, 36, 38] have shown more promise. The PF operates on the
principle of approximating the posterior state distribution by a set
of weighted samples, also referred to as particles [4].

Theoretically, the PF should carry out the ideal prediction (or
sampling) step using the actual posterior probability distribution
p(xrlz1.k), where xp is the state of tracked target at time instant
k, and zy.; represents all the observations up to time instant k.
However, the actual p(xy|z;.x) is unknown, and it does not have
a closed-form solution in nonlinear non-Gaussian environment
such as MPT system. Alternatively, the SIR filter used a suboptimal
probability distribution, called the proposal distribution function,
q(xg) = p(xrlxk_1,21.6-1), which does not consider the latest
observation, zg, in the process of sampling, whereas it includes
the state transition distribution form previous state to next state
given all previous observations except zy [17]. Thus, the SIR filter
employs the information in the latest observation, zj, by updating
the weight of the sampled particles using the likelihood function
p(zk|xk). Then, the SIR filter carries out a resampling procedure
over the reweighted particles to solve the degeneracy problem and
generate a new set of particles that approximate the actual posterior
probability distribution p(xy|z1.x)-

Many recent approaches have been proposed for developing a
better resampling scheme and choosing an appropriate proposal
distribution function, q(xy), that matches the actual posterior dis-
tribution as much as possible in order to avoid degeneracy problem
and accurately track the target [11, 26, 32, 37]. In [11, 26], layered
or heretical multiple resampling schemes are used to determine
different proposal distributions. In [37], a feedback PF is proposed

CASCON’20, November 10-13, 2020, Toronto, Canada

Al-Shatnawi and Asif, et al.

(@ (b) (© (d)

Figure 5: Consecutive pairs of frames: (a)-(b) Frames 32
and 33, (c)-(d) Frames 189 and 190 from the PETS2009S2L1-
View5 video. The MPT-LCVMPF failed to track pedestrian
moving forward with nonlinear nonconstant velocity. In (a)
and (b), ID = 3 of the pedestrian switched to 4. In (c) and (d)
ID = 20 switched to 23.

wherein a resampling scheme focusing only on the observations
to reweight the particles. In [32], a likelihood-free PF is proposed
wherein particles are reweighted without using the likelihood func-
tion. However, in tracking scenarios involving multiple pedestrians
the above mentioned approaches weaken the impact of the propa-
gated particles using the state transition model on the resampling
procedure of the SIR filter [36]. In spite of considerable research and
efforts that have recently been deployed for improving the perfor-
mance of MPT algorithms based on particle filters, finding a balance
between using the informative observations and the propagated
particles by the state transition model to accurately approximate
the actual posterior probability distribution is still a challenging
problem [24, 36].

In tracking scenarios involving multiple pedestrians, some pedes-
trians in the video may move with different and non-uniform ve-
locities for periods of time. Hence, the motion of some pedestrian
is highly dynamic, as they often stop, move backward, or turn
around. Most of the existing MPT algorithms based on particle
filters [6, 15, 16, 24, 29, 31, 34, 36, 38] assume that the motion of
pedestrians is often linear and predictable. Hence, these tracking
algorithms adopt the linear constant velocity motion (LCVM) model
for their state transition model, and they use the state transition
distribution q(xj) = p(xg|xg_1) as the proposal distribution func-
tion. Therefore, a major problem facing these tracking algorithms
is that its LCVM model fails to propagate particles accurately when
a given tracked pedestrian moves with nonlinear nonconstant ve-
locity [36]. Consequently, these MPT tracking algorithms based on
particle filter report a high number of ID switches in their tracking
results [6, 15, 16, 24, 29, 31, 34, 36, 38]. In addition, they fail to pre-
dict pedestrian trajectory correctly. In this paper, we refer to a MPT
algorithm implemented using a particle filter with a linear constant
velocity motion model as MPT-LCVMPF. For the purpose of illus-
tration, we implemented a MPT-LCVMPF, and we selected a single
pedestrian tracking result to demonstrate the effect of using LCVM
as a state transition model on ID switches (IDSW). The IDSW ef-
fects can be seen when the MPT algorithm is changing the assigned
identity of a given pedestrian. Figure 5 shows that MPT-LCVMPF
fails to track a pedestrian with the same identification (ID) in two

(@ (b) (©) (G (e)

Figure 6: Same as Fig. 5. (a)-(b) Frames 71 and 72, (c)-(d)
Frames 74 and 75 from the PETS2009S2L1-View?7 video. In
(a) and (b), pedestrian’s ID = 6 switched to 7. In (c) and (d),
ID =7 switches to 8. In (e), Frames79 shows that pedestrian’s
ID = 8 switches to 9.

consecutive frames. The ID is changed in the next frame. Figure 6
illustrates a similar situation for a different video sequence.

In this paper, for pedestrian tracking component, we focus on
motion model and resampling procedure to improve the tracking
abilities of the particle filter. Since data association is a key issue
in tracking-by-detection scheme, we propose an efficient adaptive
information driven motion (AIDM) model that retains information
contained in the particles with higher weights associated with a
pedestrian and injects new particles generated from associated
pedestrian detection with this tracker. Hence, the proposed MPT
algorithm based on the particle filter with an adaptive information
driven motion model (referred to as MPT-AIDMPF) can accurately
track pedestrians with unpredictable movements and adapted to the
motion of the scene. In a video surveillance network, a distributed
particle filtering comprised of several localized particle filters (one
for each subset of neighboring video cameras) and that the MPT-
AIDMPF is a step in that direction. An accurate MPT is essential for
any distributed particle filtering. Otherwise. individual localized
particle filtering errors would accumulate in the overall tracking
estimate formed by combining the outputs of localized particle
filters.

We present here a novel multiple pedestrian tracking system
based on modified Mask R-CNN and enhanced Particle Filter (PF) us-
ing an adaptive information driven motion model for video surveil-
lance. In particular, the main contributions of this paper are:

(1) Develop an efficient online method to detect multiple pedes-
trians from a video stream by integrating the Mask R-CNN [18]
with the post-processing steps proposed in [2] to improve
the performance of the Mask R-CNN for multiple pedestrian
detections.

Improve the resampling scheme for MPT algorithm using
the particle filter by retaining information contained in the
propagated particles and injecting new particles generated
from the informative observations.

Propose a MPT algorithm based on the particle filter with a
novel adaptive information driven motion model (referred
to as MPT-AIDMPF) that can accurately track pedestrians
with unpredictable movements and adapte to the motion of
the scene.

2

~

—
SY)
=

MPT Based on Modified Mask R-CNN and Enhanced PF using an AIDM Model

Mask R-CNN Pedestrian Detections at time ¢

IR

Post-Processing Step 1: Remove outliers in detections.

Qﬁ Analysis the bounding box area distribution and set 6/, =
. (a +20,) and 6 = (u, — 20,).

Final Pedestrian
Detections at
time t

Post-Processing Step 2: Propagate the high confidence pedestrian
detections from previous frames.

Sort the hounding box confidence scores and set f, = Q; and a}, = Q.

] g
=1k 25% 0% 7k 1d0% L ﬁ
SR, | Bk

Figure 7: Block diagram of the proposed MPD method. The
diagram shows the sequence of post-processing steps, where
af{ and afi represent the upper and lower confidence thresh-
old values for each frame, respectively. Qs is the third quar-
tile which is the median of the upper half of the data set, and
Q is the first quartile which is the median of the lower half

of the data set.

3 THE PROPOSED MPD METHOD

The proposed method is described in terms of the proposed post-
processing steps. These post-processing steps enable MPDs to be
more accurate, precise and tolerant to false positive detections in
generating pedestrian detections [2]. In [2], an adaptive approach
has been used to set both area and confidence score constraints.
The proposed method block diagram is depicted in Figure 7.

For Post-Processing Step 1, we calculate the area of the detected
bounding boxes and analyze the area distribution in each frame.
For frame at time ¢, the bounding boxes with associated area less
than the lower area threshold, denoted by 0! will be removed. Also,
the bounding boxes with associated area greater than the upper
area threshold, denoted by 0t will be removed. For each frame,
we calculate both mean, denoted by 14, and standard deviation,
denoted by oy, for the area distribution. We remove outlier pedes-
trian detections for each frame by assigning 0; = (s — 204) and
O = (pa +204) [2].

For Post-Processing Step 2, we follow Algorithm 1 in [2] to prop-
agate the high confidence pedestrian detections from the previous
frame, and create the final detection set for the current frame. It
should be noted that using the Mask R-CNN [18] with the post-
processing steps proposed in [2], wherein an adaptive approach
to determine both area and confidence scores, generate more ac-
curate pedestrian detection results compared to using the Mask R-
CNN [18] alone. Figure 8(b) shows that the proposed MPD method
is able to correctly detect the two pedestrians compared to the Mask
R-CNN [18] in Figure 4(b).

4 THE PROPOSED MPT-AIDMPF TRACKING
ALGORITHM
The proposed MPT algorithm consists of multiple pedestrian tracker

and data association components. The proposed pedestrian tracker
uses PF with an efficient adaptive information driven motion (AIDM)

CASCON’20, November 10-13, 2020, Toronto, Canada

Algorithm 1 MPT-AIDMPF over a Single Camera

Input: DF = {df, d:’;, cee dl]f/f}’ Tk-1 = {T{C_l, 1'5_1, cee T’If_l}
Output: Tk
LOOP Process
. for every rF"1 e TF~1 do
state prediction by particle filter
: end for
. Tk — DataAssociation(T*~!, D¥)
LOOP Process
: for every % eTk do
6 if (r* does not represent a new pedestrian) then

[Y

5

7: Update the associated tracker by using the adaptive infor-
mation driven motion model

8. endif

9: end for

(@) (b) ©

Figure 8: Same frames as Figure 4. (b) illustrates that the pro-
posed MPD method is able to identify and recover the pedes-
trians as a true positive detections even if they are detected
with single bounding box by the Mask R-CNN [18] in Fig-
ure 4(b).

model and a new resampling procedure to retain information con-
tained in the highly weighted particles of a given pedestrian tracker
and injects new particles generated from the associated pedestrian
detection with this tracker. The combination between PF and the
AIDM model allows the pedestrian tracker to track pedestrians
having unpredictable motions with higher tracking accuracy and
lower ID switches.

4.1 Outline of the Algorithm

The overview of the algorithm is presented in Algorithm 1. For
each new frame f; captured by a single camera at time step k,
the previous trackers, k-1 = {T{C_l, 1'5_1, cee TIE_I }, and current

pedestrian detection list, Dk = {dic, déc, cee d’;/[}, are used for track-
ing. The data association component is used to construct the sim-
ilarity matrix to find the association between existing trackers,
k=1 ¢ Tk_l, and detections, d* € Dk , at time k. Furthermore, it
controls the initialization and termination status of the trackers,
and supports the tracker with key-particles from associated detec-
tion. In this paper, the target state x consists of two-dimensional

CASCON’20, November 10-13, 2020, Toronto, Canada

(2) (b) (© (d)

Figure 9: Consecutive frames: (a)-(b) Frames 71 and 72, (c)-
(d) Frames 189 and 190 from the PETS2009S2L1-View5 video.
The proposed MPT-AIDMPF algorithm correctly tracks the
pedestrian without any ID switch. Frames (a) and (b) show
pedestrian with the same ID = 3. Similarly, (c) and (d) show
pedestrian with ID = 8. Note: The pink particle cloud repre-
sents the newly generated particles added to the original set
of particles. The complete video is available at
https://youtu.be/jQCaMViCd8M

position (x,y), and velocity in direction of x and y, (x,y).
T
x= [x, yx,y]

4.2 Pedestrian Colour-based Appearance
Model

When people are walking with significant pose changes, the colour
information is considered to be the most trustworthy feature. How-
ever, extracting colour information from occluded pedestrian is
unreliable. So, we only update the pedestrian appearance model
if a pedestrian does not overlap with another pedestrian. In our
experiment, the combination of RGB with 8 bins per channel and
Hue-Saturation (HS) with 12 bins per channel features yields the
best result. Also, we constantly update the pedestrian appearance
template as

F’;k = aFZ,F +(1-a) F’;;_ll (1)

i i i

where F I;k represents the colour feature for tracker 7; at time k ,

parameter a specifies the learning (or updating) rate between the

last and current features given by F Z’F' In this paper, a = 0.05.
J

4.3 Data Association

In this paper to link detections to trackers, the similarity matrix Sy
between le_l and d}‘ at time step k is defined as

Sk(rf L db) = AL dF) w o(ef 1, dF) @)

where A(le_l, d*) measures both the appearance similarity us-
ing Bhattacharyya coefficient [1, 20] and Euclidean distance be-
tween tracker rlk_l and detection dj.c in the logarithmic scale. The
O(le_l, d}‘) is the intersection-over-union of the bounding boxes
of tracker T{C_l and detection d}‘ in the logarithmic scale. We com-
pute the intersection-over-union score based on the PASCAL VOC

Al-Shatnawi and Asif, et al.

Figure 10: Same as Fig. 9 except for a different pedestrian.
Consecutive frames: (a)-(b) Frames 71 and 72, (c)-(d) Frames
74 and 75 from the PETS2009S2L1-View7 video. In (e), Frame
79 shows that pedestrian hold his ID 6. The complete video
is available at

https://youtu.be/2ulsLMlaUCM

criterion [12]. The proposed similarity matrix, S;, avoids updating
a given pedestrian tracker with confusing nearby detection because
it incorporates the proposed pedestrian colour-based appearance
model(Section 4.2). In this paper, we compute the appearance simi-
larity measure between the colour feature of F 5" and F I;k__ll using

the popular Bhattacharyya coefficient [1, 20]. F]inally, the assign-
ment between a detection and a tracker is solved optimally using
the well-known Hungarian algorithm [21].

The outputs of the data association step are matched trackers,
unmatched trackers, and unmatched detections. For unmatched
trackers, we used an age threshold Tyge to terminate these trackers
if they are not updated for at least Tyge frames. This prevents an
unbounded growth in the number of unmatched trackers. For un-
matched detections, we create a new tracker. For matched tracker,
we used the proposed adaptive information driven motion model
described next.

4.4 Adaptive information driven motion model
and resampling scheme

Given the current particle set at time step k , {x;;, wl’; }ﬁ » obtained
by applying the resampling technique of the particle filter, the
matched pedestrian detection is used to update the propagated
particles of a given pedestrian tracker. It should be noted that the
weights for these particles are normalized so they sum to 1. The
new adaptive information driven motion model (AIDM) starts by
sorting the current particle set in descending order. Then, selecting
the highest weighted particles based on resampling proportion
coefficient, §, 0 < f < 1, the number of selected particles will
be equal to () (N), where N is the total number of particles that
are used for a pedestrian tracker. After that we use the matched
pedestrian detection to generate (1 — f)(N) new particles with
equal weights.

We adopt a dynamic approach to set the resampling proportion
coefficient value for the frame at time k, which is denoted by fy.
In each frame, we analyze the distribution of the weight scores

MPT Based on Modified Mask R-CNN and Enhanced PF using an AIDM Model

Table 1: Quantitative comparison between proposed
MMaskRCNN algorithm and the original Mask R-CNN
algorithm. The best results are shown in bold.

MPD algorithm MODA | MODP
MMaskRCNN (ours) | 73.1% | 81.90%
Mask R-CNN [18] 68.15% | 77.81%

{W]lc}f\i , for a pedestrian tracker, and we use the third quartile
value to set the resampling proportion coefficient value [2]. The
third quartile, denoted by Qs , is the median of the upper half of
the data set. Then, we generate a new particle set, (1 — §)(N),
from a multivariate Gaussian distribution with means equal to the
central coordinates and standard deviations proportional to the
height and width of the pedestrian detection, respectively. Finally,
we combine the two sets, the propagated particles and the newly
generated particles, to create the final set of particles. The weights
of the final particle set are normalized so when these particles are
reused in the subsequent time step, they accurately describe the
previous particles’ influence on the tracker. Moreover, the proposed
AIDM and resampling scheme have used both the informative
observations (pedestrian detections) and the propagated particles to
accurately approximate the actual posterior distribution p(xg|zy.t)-

5 EXPERIMENTAL RESULTS

We evaluated and tested the proposed MPT system on nine chal-
lenging video sequences taken from two publicly available datasets:
View1, View5, View6, View7 and View8 from the PETS2009S2L1 [13],
and Camera0, Cameral, Camera2, and Camera3 from the EPFL-
terrace video sequence [14]. The PETS2009S2L1 is a very challeng-
ing video dataset because the pedestrians often change direction
and groups form and split frequently. Moverover, the PETS2009S2L1
is widely used in evaluating MPT tracking algorithms. The EPFL-
terrace sequence is outdoor sequence consisting of up to nine people
appearing one after the other and walking in front of the cameras.
It tests the ability of our algorithm to cope with crowded environ-
ment. For this purpose, three performance comparisons are taken
into consideration. First, we compare the performance of the pro-
posed MPD algorithm (referred to as MMaskRCNN) with that of
the original Mask R-CNN algorithm. Second, we compare the per-
formance of the proposed MPT-AIDMPF algorithm with that of
the MPT-LCVMPF algorithm. The MPT-LCVMPF represents any
tracking algorithm based on PF that adopts the linear constant
velocity motion (LCVM) model for its state transition model. Then,
we compare the performance of the proposed MPT-AIDMPF with
that of other state-of-the-art MPT algorithms [15, 16, 38], which
use particle filters in their online MPT algorithm.

5.1 Evaluation metrics

We follow the most frequently used criteria, the CLEAR MOT [35]
metrics, i.e., multiple object detection accuracy (MODA), multiple
object detection precision (MODP), multiple object tracking ac-
curacy (MOTA), multiple object tracking precision (MOTP), and
identity switches (IDSW) to evaluate the performance of both the
proposed MPD and MPT algorithms. The MOTA score combines
three types of errors: false positive (FP), missed targets (FN), and

10

CASCON’20, November 10-13, 2020, Toronto, Canada

identity switches (IDSW). The MOTP score shows spatiotemporal
overlap between the ground truth tracks and the proposed MPT
algorithm output tracks. Finally, the IDSW score shows the number
of times the reported identity of a ground-truth track changes.

5.2 Results

For the purpose of illustration, we selected a single pedestrian
tracking result to demonstrate the effect of using the proposed MPT-
AIDMPF on ID switches. Figure 9 and 10 show that the proposed
MPT-AIDMPF algorithm tracks pedestrians without any ID switch
as compared to the outputs of MPT-LCVMPF shown in Figure 5
and Figure 6, respectively. Furthermore, Figure 9 and 10 show that
the proposed MPT-AIDMPF algorithm accurately predicts the size
of bounding box (which fits the pedestrian) as compared to MPT-
LCVMPF shown in Figure 5 and Figure 6, respectively.

Table 1 shows the average quantitative evaluations for the perfor-
mance of the proposed MPD algorithm (referred to as MMaskRCNN)
with that of the original Mask R-CNN algorithm [18] for the two
datasets.

Table 2 compares the performance of our MPT-AIDMPF algo-
rithm with MPT-LCVMPF for all nine video sequences in term
of identity switches (IDSW). Table 2 shows that our proposed
MPT-AIDMPF algorithm reduces the number of ID switches to
zero for most of the video sequences. To further verify the effec-
tiveness of the proposed MPT-AIDMPF algorithm, a comparative
experiment is carried out on the PETS2009S2L1-View1 video se-
quence using the pedestrian detections provided by the website!. It
should be noted that the PETS2009S2L1-View1 video sequence is
the most commonly used for comparing the performance of MPT
algorithms [24]. The PETS2009S2L1-View1 video sequence shows
pedestrians walking across an intersection in various directions
at variable speed [13]. Table 3 shows the quantitative comparison
of the proposed MPT-AIDMPF with other state-of-the-art MPT
algorithms. It can be seen that compared with the other MPT al-
gorithms, the proposed MPT-AIDMPF algorithm achieves the best
performance in MOTA, MOTP and IDSW scores. The reason for
the improved performance is because the proposed MPT-AIDMPF
algorithm uses both the informative observations (pedestrian detec-
tions) and the propagated particles to accurately track pedestrians.

6 CONCLUSION

In this paper, we improve the performance of the Mask R-CNN for
multiple pedestrian detection by using the post-processing steps.
Furthermore, we presented a robust adaptive information driven
motion model for multiple pedestrian tracking particle filter, MPT-
AIDMPF, which enhances the tracking accuracy and precision as
well as reduces the number of tracker ID switches in tracking-
by-detection approaches. The proposed MPT-AIDMPF algorithm
uses an efficient adaptive information driven motion model that
retains information contained in the highly weighted particles of a
given pedestrian tracker and injects new particles generated from
the associated pedestrian detection with the tracker. The proposed
MPT-AIDMPF algorithm was evaluated on multiple video sequences
taken from two publicly available datasets, where it achieves supe-
rior performance as compared to the MPT-LCVMPF algorithm and

!http://www.milanton.de/

CASCON’20, November 10-13, 2020, Toronto, Canada

Al-Shatnawi and Asif, et al.

Table 2: The identity switches (IDSW) score for the proposed MPT-AIDMPF and MPT-LCVMPF algorithms.

Method PETS2009S2L1 EPFL-Terrace
View1l | View5 | View6 | View7 | View8 | Camera0 | Cameral | Camera2 | Camera3
MPT-LCVMPF 8 48 96 47 71 2 4 5 0
MPT-AIDMPF 0 2 1 0 1 0 0 0 0
Table 3: Quantitative comparison between Proposed MPT- [8] P. Dollar, C. Wojek, B. Schiele, and P. Perona. 2009. Pedestrian Detection: A

AIDMPF algorithm and different MPT algorithms on the
PETS2009S2L1-View1 video sequence. The best results are
shown in bold.

MPT algorithm | MOTAT | MOTPT | IDSW]
Gomez [16] 51.1% 75.0% 27
Yoon [38] 66.6% | 57.4% 34
GSDL [15] 80.3% | 61.5% 33
MPT-AIDMPF 92.0% 81.20% 12

Evaluation metrics with symbol (T) indicates higher
score is better; while for evaluation metrics with
symbol (]) indicates lower score is better

other state-of-the-art MPT algorithms. Moreover, it was shown that
considering adaptive information driven motion (AIDM) model is
important to improve the performance of MPT algorithm in video
surveillance applications.

7

ACKNOWLEDGMENTS

This research is supported in part by Natural Science and Engi-
neering Research Conference (NSERC), Canada through the Create
grant entitled CreateDAV: Data Analytics and Visualization. The
authors would like to acknowledge support from IBM in carrying
out the project. Computations were performed on the SOSCIP Con-
sortium’s [Parallel-CPU, GPU and/or Cloud Analytics] computing
platform(s). SOSCIP is funded by FedDev Ontario, IBM Canada Ltd.
and Ontario academic member institutions.

REFERENCES

(1]

(2]

Frank J. Aherne, Neil A. Thacker, and Peter I. Rockett. 1998. The Bhattacharyya
Metric as an Absolute Similarity Measure for Frequency Coded Data. Kybernetika
34 (1998), 363-368.

M. Al-Shatnawi, V. Movahedi, A. Asif, and A. An. 2018. Improving Real-Time
Pedestrian Detection Using Adaptive Confidence Thresholding and Inter-Frame
Correlation. In 2018 IEEE 20th International Workshop on Multimedia Signal Pro-
cessing (MMSP). 1-5. https://doi.org/10.1109/MMSP.2018.8547103

M. Andriluka, S. Roth, and B. Schiele. 2008. People-Tracking-by-Detection and
People-Detection-by-Tracking. In 2008 IEEE Conference on Computer Vision and
Pattern Recognition. 1-8. https://doi.org/10.1109/CVPR.2008.4587583

M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. 2002. A Tutorial on
Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE
Transactions on Signal Processing 50, 2 (Feb. 2002), 174-188. https://doi.org/10.
1109/78.978374

A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft. 2016. Simple Online and
Realtime Tracking. In 2016 IEEE International Conference on Image Processing
(ICIP). 3464-3468. https://doi.org/10.1109/ICIP.2016.7533003

M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. Van Gool. 2011.
Online Multiperson Tracking-by-Detection from a Single, Uncalibrated Camera.
IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 9 (Sept. 2011),
1820-1833. https://doi.org/10.1109/TPAMI.2010.232

J. Chen, H. Sheng, Y. Zhang, and Z. Xiong. 2017. Enhancing Detection Model for
Multiple Hypothesis Tracking. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW). 2143-2152. https://doi.org/10.1109/
CVPRW.2017.266

[9]

[10

[11

(12]

(13

[14

[16]

(17]

[18

[20

[21]

[22

[24

[25]

[26]

1"

Benchmark. In 2009 IEEE Conference on Computer Vision and Pattern Recognition.
304-311. https://doi.org/10.1109/CVPR.2009.5206631

R. Douc and O. Cappe. 2005. Comparison of Resampling Schemes for Particle
Filtering. In ISPA 2005. Proceedings of the 4th International Symposium on Image
and Signal Processing and Analysis, 2005. 64-69. https://doi.org/10.1109/ISPA.
2005.195385

V. Eiselein, E. Bochinski, and T. Sikora. 2017. Assessing Post-Detection Filters for
a Generic Pedestrian Detector in a Tracking-by-Detection Scheme. In 2017 14th
IEEE International Conference on Advanced Video and Signal Based Surveillance
(AVSS). 1-6. https://doi.org/10.1109/AVSS.2017.8078484

Victor Elvira, Luca Martino, David Luengo, and Ménica F. Bugallo. 2016. Heretical
Multiple Importance Sampling. IEEE Signal Processing Letters 23, 10 (Oct. 2016),
1474-1478. https://doi.org/10.1109/LSP.2016.2600678

Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and
Andrew Zisserman. 2010. The Pascal Visual Object Classes (VOC) Challenge.
International Journal of Computer Vision 88, 2 (June 2010), 303-338. https:
//doi.org/10.1007/s11263-009-0275-4

J. Ferryman and A. Shahrokni. 2009. PETS2009: Dataset and Challenge. In 2009
Twelfth IEEE International Workshop on Performance Evaluation of Tracking and
Surveillance. 1-6. https://doi.org/10.1109/PETS-WINTER.2009.5399556

F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua. 2008. Multicamera People Tracking
with a Probabilistic Occupancy Map. IEEE Transactions on Pattern Analysis and
Machine Intelligence 30, 2 (Feb. 2008), 267-282. https://doi.org/10.1109/TPAML
2007.1174

Zeyu Fu, Pengming Feng, Federico Angelini, Jonathon Chambers, and
Syed Mohsen Naqvi. 2018. Particle PHD Filter Based Multiple Human Track-
ing Using Online Group-Structured Dictionary Learning. IEEE Access 6 (2018),
14764-14778. https://doi.org/10.1109/ACCESS.2018.2816805

David Gerénimo Gomez, Frédéric Lerasle, and Antonio M. Lopez Peiia. 2012.
State-Driven Particle Filter for Multi-Person Tracking. In Advanced Concepts for
Intelligent Vision Systems, 14th International Conference) (Ed.). Springer, Berlin,
Heidelberg, 467-478. https://doi.org/10.1007/978-3-642-33140-4_41

N. J. Gordon, D. J. Salmond, and A. F. M. Smith. 1993. Novel Approach to
Nonlinear/Non-Gaussian Bayesian State Estimation. IEE Proceedings F (Radar
and Signal Processing) 140, 2 (April 1993), 107-113. https://doi.org/10.1049/ip-f-
2.1993.0015

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. 2017. Mask
R-CNN. In Proceedings of the IEEE International Conference on Computer Vision.
2961-2969.

Jan Hosang, Mohamed Omran, Rodrigo Benenson, and Bernt Schiele. 2015. Taking
a Deeper Look at Pedestrians. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 4073-4082.

T. Kailath. 1967. The Divergence and Bhattacharyya Distance Measures in Signal
Selection. IEEE Transactions on Communication Technology 15, 1 (Feb. 1967),
52-60. https://doi.org/10.1109/TCOM.1967.1089532

H. W. Kuhn. 2005. The Hungarian Method for the Assignment Problem. Naval
Research Logistics (NRL) 52, 1 (Feb. 2005), 7-21. https://doi.org/10.1002/nav.20053
Tian-cheng Li, Gabriel Villarrubia, Shu-dong Sun, Juan M. Corchado, and Javier
Bajo. 2015. Resampling Methods for Particle Filtering: Identical Distribution,
a New Method, and Comparable Study. Frontiers of Information Technology &
Electronic Engineering 16, 11 (Nov. 2015), 969-984. https://doi.org/10.1631/FITEE.
1500199

Xi Li, Weiming Hu, Chunhua Shen, Zhongfei Zhang, Anthony Dick, and Anton
Van Den Hengel. 2013. A Survey of Appearance Models in Visual Object Tracking.
ACM Trans. Intell. Syst. Technol. 4, 4 (Oct. 2013), 58:1-58:48. https://doi.org/10.
1145/2508037.2508039

Wenhan Luo, Junliang Xing, Anton Milan, Xiaoqin Zhang, Wei Liu, Xiaowei
Zhao, and Tae-Kyun Kim. 2017. Multiple Object Tracking: A Literature Review.
arXiv:1409.7618 [cs] (May 2017). arXiv:1409.7618 [cs]

L. Martino, V. Elvira, and F. Louzada. 2016. Weighting a Resampled Particle in
Sequential Monte Carlo. In 2016 IEEE Statistical Signal Processing Workshop (SSP).
1-5. https://doi.org/10.1109/SSP.2016.7551711

L. Martino, V. Elvira, D. Luengo, and J. Corander. 2017. Layered Adaptive
Importance Sampling. Statistics and Computing 27, 3 (May 2017), 599-623.
https://doi.org/10.1007/s11222-016-9642-5

https://doi.org/10.1109/MMSP.2018.8547103
https://doi.org/10.1109/CVPR.2008.4587583
https://doi.org/10.1109/78.978374
https://doi.org/10.1109/78.978374
https://doi.org/10.1109/ICIP.2016.7533003
https://doi.org/10.1109/TPAMI.2010.232
https://doi.org/10.1109/CVPRW.2017.266
https://doi.org/10.1109/CVPRW.2017.266
https://doi.org/10.1109/CVPR.2009.5206631
https://doi.org/10.1109/ISPA.2005.195385
https://doi.org/10.1109/ISPA.2005.195385
https://doi.org/10.1109/AVSS.2017.8078484
https://doi.org/10.1109/LSP.2016.2600678
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1109/PETS-WINTER.2009.5399556
https://doi.org/10.1109/TPAMI.2007.1174
https://doi.org/10.1109/TPAMI.2007.1174
https://doi.org/10.1109/ACCESS.2018.2816805
https://doi.org/10.1007/978-3-642-33140-4_41
https://doi.org/10.1049/ip-f-2.1993.0015
https://doi.org/10.1049/ip-f-2.1993.0015
https://doi.org/10.1109/TCOM.1967.1089532
https://doi.org/10.1002/nav.20053
https://doi.org/10.1631/FITEE.1500199
https://doi.org/10.1631/FITEE.1500199
https://doi.org/10.1145/2508037.2508039
https://doi.org/10.1145/2508037.2508039
https://arxiv.org/abs/1409.7618
https://doi.org/10.1109/SSP.2016.7551711
https://doi.org/10.1007/s11222-016-9642-5

MPT Based on Modified Mask R-CNN and Enhanced PF using an AIDM Model

[27]

[28

[29

[30]

[31]

[32

[33]

Anton Milan, Laura Leal-Taixe, Ian Reid, Stefan Roth, and Konrad Schindler. 2016.
MOT16: A Benchmark for Multi-Object Tracking. arXiv:1603.00831 [cs] (March
2016). arXiv:1603.00831 [cs]

Shaogqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN: To-
wards Real-Time Object Detection with Region Proposal Networks. In Advances
in Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett (Eds.). Curran Associates, Inc., 91-99.

Ricardo Sanchez-Matilla, Fabio Poiesi, and Andrea Cavallaro. 2016. Online Multi-
Target Tracking with Strong and Weak Detections. In Computer Vision — ECCV
2016 Workshops (Lecture Notes in Computer Science). Springer, Cham, 84-99.
https://doi.org/10.1007/978-3-319-48881-3_7

S. Santhoshkumar, S. Karthikeyan, and B. S. Manjunath. 2013. Robust Multiple
Object Tracking by Detection with Interacting Markov Chain Monte Carlo. In
2013 IEEE International Conference on Image Processing. 2953-2957. https://doi.
org/10.1109/ICIP.2013.6738608

Guang Shu, Afshin Dehghan, Omar Oreifej, Emily Hand, and Mubarak Shah.
2012. Part-Based Multiple-Person Tracking with Partial Occlusion Handling. In
2012 IEEE Conference on Computer Vision and Pattern Recognition. 1815-1821.
https://doi.org/10.1109/CVPR.2012.6247879

Fabian Sigges, Marcus Baum, and Uwe D. Hanebeck. 2017. A Likelihood-Free
Particle Filter for Multi-Obiect Tracking. In 2017 20th International Conference on
Information Fusion (Fusion). 1-5. https://doi.org/10.23919/ICIF.2017.8009796

A. W. M. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. Dehghan, and
M. Shah. 2014. Visual Tracking: An Experimental Survey. IEEE Transactions on
Pattern Analysis and Machine Intelligence 36, 7 (July 2014), 1442-1468. https:
//doi.org/10.1109/TPAMI.2013.230

12

(34

[35

[36

[37

(38]

[39

[40]

CASCON’20, November 10-13, 2020, Toronto, Canada

Nan Song, Kezhi Li, and Wei Chen. 2018. Robust Visual Tracking Via Adap-
tive Structure-Enhanced Particle Filter. In 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). 1578-1582. https://doi.org/10.
1109/ICASSP.2018.8461727

Rainer Stiefelhagen, Keni Bernardin, Rachel Bowers, John Garofolo, Djamel
Mostefa, and Padmanabhan Soundararajan. 2006. The CLEAR 2006 Evaluation.
In Multimodal Technologies for Perception of Humans (Lecture Notes in Computer
Science). Springer, Berlin, Heidelberg, 1-44. https://doi.org/10.1007/978-3-540-
69568-4_1

Xuedong Wang, Tiancheng Li, Shudong Sun, and Juan M. Corchado. 2017. A
Survey of Recent Advances in Particle Filters and Remaining Challenges for
Multitarget Tracking. Sensors (Basel, Switzerland) 17, 12 (Nov. 2017). https:
//doi.org/10.3390/s17122707

Tao Yang, Richard S. Laugesen, Prashant G. Mehta, and Sean P. Meyn. 2016.
Multivariable Feedback Particle Filter. Automatica (Journal of IFAC) 71, C (Sept.
2016), 10-23. https://doi.org/10.1016/j.automatica.2016.04.019

J.H. Yoon, M. H. Yang, J. Lim, and K. J. Yoon. 2015. Bayesian Multi-Object Tracking
Using Motion Context from Multiple Objects. In 2015 IEEE Winter Conference on
Applications of Computer Vision. 33-40. https://doi.org/10.1109/WACV.2015.12
Fengwei Yu, Wenbo Li, Quanquan Li, Yu Liu, Xiaohua Shi, and Junjie Yan. 2016.
POI: Multiple Object Tracking with High Performance Detection and Appearance
Feature. In Computer Vision — ECCV 2016 Workshops (Lecture Notes in Computer
Science). Springer, Cham, 36-42. https://doi.org/10.1007/978-3-319-48881-3_3
Zhong-Qiu Zhao, Peng Zheng, Shou-Tao Xu, and Xindong Wu. 2019. Object
Detection With Deep Learning: A Review. IEEE Transactions on Neural Networks
and Learning Systems 30, 11 (Nov. 2019), 3212-3232. https://doi.org/10.1109/
TNNLS.2018.2876865

https://arxiv.org/abs/1603.00831
https://doi.org/10.1007/978-3-319-48881-3_7
https://doi.org/10.1109/ICIP.2013.6738608
https://doi.org/10.1109/ICIP.2013.6738608
https://doi.org/10.1109/CVPR.2012.6247879
https://doi.org/10.23919/ICIF.2017.8009796
https://doi.org/10.1109/TPAMI.2013.230
https://doi.org/10.1109/TPAMI.2013.230
https://doi.org/10.1109/ICASSP.2018.8461727
https://doi.org/10.1109/ICASSP.2018.8461727
https://doi.org/10.1007/978-3-540-69568-4_1
https://doi.org/10.1007/978-3-540-69568-4_1
https://doi.org/10.3390/s17122707
https://doi.org/10.3390/s17122707
https://doi.org/10.1016/j.automatica.2016.04.019
https://doi.org/10.1109/WACV.2015.12
https://doi.org/10.1007/978-3-319-48881-3_3
https://doi.org/10.1109/TNNLS.2018.2876865
https://doi.org/10.1109/TNNLS.2018.2876865

Understanding Brain Dynamics for Color Perception Using
Wearable EEG Headband

Mahima Chaudhary
Lassonde School of Engineering
York University, Toronto, Canada

cmahima®@yorku.ca

Lauren E Sergio
Faculty of Health
York University, Toronto, Canada
Isergio@yorku.ca

ABSTRACT

The perception of color is an important cognitive feature of the
human brain. The variety of colors that impinge upon the human
eye can trigger changes in brain activity which can be captured us-
ing electroencephalography (EEG). In this work, we have designed
amulticlass classification model to detect the primary colors from
the features of raw EEG signals. In contrast to previous research,
our method employs spectral power features, statistical features as
well as correlation features from the signal band power obtained
from continuous Morlet wavelet transform instead of raw EEG, for
the classification task. We have applied dimensionality reduction
techniques such as Forward Feature Selection and Stacked Au-
toencoders to reduce the dimension of data eventually increasing
the model’s efficiency. Our proposed methodology using Forward
Selection and Random Forest Classifier gave the best overall accu-
racy of 80.6% for intra-subject classification. Our approach shows
promise in developing techniques for cognitive tasks using color
cues such as controlling Internet of Thing (IoT) devices by looking
at primary colors for individuals with restricted motor abilities.

KEYWORDS

Wearable computing, Machine learning, Brain Computer Interface

1 INTRODUCTION

The advancements in sensor technologies have facilitated the
growth of wearable headband devices for development in Brain-
Computer Interface (BCI) applications. One such device is the
Muse 2 headband ! which is a portable non-invasive device that
allows capturing of EEG signals. In this work, we analyzed the rela-
tionship between EEG signals and color stimuli using the Muse 2
headband. The objective was to extract the information (features)
from EEG signals to classify or distinguish them based on the
red(R), green(G), and blue(B) colors that were used to stimulate

https://choosemuse.com/

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honoured. For all other uses, contact the owner/author(s).

CASCON’20, November 10-13 2020, Toronto, Canada

© 2020 Copyright held by the owner/author(s).

Sumona Mukhopadhyay
Lassonde School of Engineering
York University, Toronto, Canada

mukhopas@yorku.ca

13

Marin Litoiu
Lassonde School of Engineering
York University, Toronto, Canada

mlitoiu@yorku.ca

Meaghan S Adams
Faculty of Health
York University, Toronto, Canada
msadams@yorku.ca

the cortical activity. The classification result could be potentially
used in an integrated IoT environment where it could be used to
control appliances [28, 36]. One such application could be, where
people with restricted motor ability could switch on/off appli-
ances by looking at a particular color. The study that we do is a
proof of concept, it can be extended to other colors also. However,
the proposed application would require input and effort from spe-
cialists in other fields too. The work can also be expanded in the
healthcare field where it could be used to detect color blindness
[11].

Previously, classification tasks like these have been performed
[8, 13, 29] using sophisticated medical-grade EEG devices with
multiple sensors but in our work, we used a simple four-electrode/
channel consumer-friendly device to record the raw EEG signals.
The use of Muse headband allowed portability to our work and
its integration with IoT. Also contrary to previous approaches, in
our study, we used features like power, variance in power, various
pairwise cross-correlation features and several other statistical
features from the signal band power obtained from continuous
Morlet wavelet transform for classification task instead of raw EEG
signals or event-related potential (ERP) values. The raw EEG data
was preprocessed and features that were important to study the
effect of color stimuli on EEG were extracted from the data using
digital signal processing techniques.

We mainly focused on Alpha and Beta frequency bands, as these
are most likely to be stimulated when a person is alert, attentive,
or concentrating and not performing a high cognitive activity. We
employed various linear and non-linear Machine Learning (ML)
algorithms namely, K Nearest Neighbors, Support Vector Machine
(SVM), Logistic Regression, Random Forest, models like Artificial
Neural Networks, and boosting approaches like Gradient Boost-
ing, to perform the three-class classification task. We investigated
the classification performance of ML algorithms both on a single
person’s data (intra-subject) as well as on combining the data from
different people (inter-subject). We also applied dimensionality
reduction techniques like forward feature selection and stacked
autoencoders to increase the performance of the architecture. The
main research questions addressed in this paper are:

« Isit possible to distinguish EEG signals from a four-channel
wearable headband, produced by RGB color exposure, by
training ML models on features that account for statistical,
spectral and correlation properties of EEG?

CASCON’20, November 10-13 2020, Toronto, Canada

¢ Can feature reduction techniques like Forward-Feature Se-
lection(supervised) and Autoencoders (unsupervised) make
the ML algorithms for EEG classification more efficient?

» Does the performance of ML algorithms differ for inter-
subject and intra-subject classification?

The rest of the paper is organized as follows. Section 2 contains
the related work. In Section 3 we describe our proposed method-
ology. Section 4 presents our evaluation metrics followed by exper-
imental results in Section 5. Concluding remarks are presented in
Section 6.

2 RELATED WORK

In recent years, researchers have used wearable headbands to an-
alyze the response of EEG under different stimuli. K. Johannesen
et. al.[19] used SVM to derive useful EEG features in order to pre-
dict working memory performance in schizophrenia and healthy
adults. The authors in [9] used a regression model trained on data
gathered from cognitive tasks (collected from a 6-channel EEG
headset) in order to model mental workload using EEG features
for intelligent systems. In [3, 23] the EEG data has been used to
examine driver’s alertness during driving sessions.

Diane Aclo et al.[1] used a 14 channel EEG device to monitor the
effect of color stimuli on people. They used features like power
spectral density and waveform length for classification using an
Artificial Neural network. In [2] feature selection algorithm has
been investigated for EEG signal due to RGB colors using screw-
able gold EEG electrodes. Arnab Rakshit et al. [27] proposed the
use of a fuzzy space classifier to discriminate colors from EEG by
using a 10 electrode device. In [26], an Emotiv headset has been
used to study separation and classification of EEG response to
color stimuli by using SVM. Zhang et el. in [34] showed how alpha
and beta band powers are affected by stimuli from RGB colors. All
the above classification tasks have been conducted using com-
plicated EEG devices in contrast to our work. Furthermore, our
proposed method achieves a high accuracy using the Muse head-
band. Recently, the use of portable headband devices have gained
popularity due to their ease of use and accessibility. The authors in
[35, 36] have used G.tec’s MOBIlab four channel portable device in
a problem similar to ours. However, their method yielded a lower
accuracy of 58% in comparison to our proposed approach. A head-
band from Mindwave Neurosky has also been used [4] in a task
similar to our. However, the authors achieved a lower accuracy
of 53% with their method. Our results have shown significant im-
provement. In many studies, Muse has also been used to acquire
EEG signals for various classification tasks. EEG-based excitement
detection in immersive environments has been studied by Jason
et al in [30]. Krigolson et al. [21]Jused Muse headband to Assess
Human visual attention by assigning subjects an "oddball"task
wherein they saw a series of infrequently and frequently appearing
circles and were instructed to count the number of target circles
that they saw. However they did not apply any ML model in their
work. In [7] classification task has been performed to classify recre-
ational and instructional video sessions using Muse. They used
spectral power and connectivity features from raw EEG in their
work and got the best performance with SVM and Logistic Regres-
sion model.

14

C, Mahima, et al.

3 PROPOSED METHODOLOGY

The main frequencies captured by EEG data are in form of spe-
cific human EEG signals namely Delta with frequency 3Hz or be-
low (Deep dreamless sleep), Theta with frequency from 3.5-8 Hz
(Deep meditation), Alpha with frequency 8-12 Hz (Calm relaxed
yet alert state), Beta with frequency 13-30 Hz (Active, busy think-
ing) and Gamma with a frequency greater than 41 Hz (Higher
mental activity)[20]. Each type of frequency band signal repre-
sents a different state of consciousness of mind ranging from sleep
to active thinking. We mainly focused on Alpha and Beta frequency
bands. The work in this paper has been accomplished in the follow-
ing five phases: data acquisition, data cleaning and preprocessing,
feature extraction, dimensionality reduction, and classification of
data into red, green, and blue. We shall explain each component
in detail.

3.1 Data Acquisition

Muse headband consists of four channels/electrodes namely AF7
and TP9 on the left and AF8 and TP10 on the right. These are
named and positioned according to the International 10-20 Sys-
tem 2, as shown in Figure 1. The sampling rate of Muse is 256Hz.
The data from all channels was collected. There were eight sub-
jects (aged 18-30yrs) who participated in the visual experiment.
The experiment was conducted using the University of Notting-
ham’s Psychopy 3 [25] toolbox. Five trials each four minutes long
were conducted for each participant at different times. In each
trial, a color from RGB was shown in a random order, twenty times
each, for a period of two seconds each, such that a black color was
shown for two seconds between each of the RGB colors to pro-
vide a baseline to the experiment. The experiment was conducted
in a dark room and the subjects were told to do minimum facial
movements and eye blinks. A similar protocol has been followed in
previous experiments too [1, 28, 31]. The time period of the stimu-
lus or the main color was kept small to only capture the effect of
color on the cortical excitability. The data from Muse headband
was collected using Muse SDK? and a third party application for
Muse called Mind Monitor®. The Mind Monitor application indi-
cates potential jaw clenches and eye blinks in the EEG data. We
used this capability as a marker to get the starting timestamp of
the data. The experiment started with a jaw clench which was
captured by Mind Monitor and from that time stamp, the data was
separated according to the color stimuli. The architecture we used
is shown in Figure 2 and the detailed experimental setup is shown
in Figure 3.

AF7 . Pl ‘

¢) €
PeeeeeROR
®@@@@:@@@ @
@O OO O

06

AF8.

TP10

Channel

() Reference

TNON

Figure 1: The 10-20 system of electrode placement for Muse

2https:// en.wikipedia.org/wiki/ 10%E2%80%9320_system_(EEG)
3https://choosemuse.com/development/
4https://mind-monitor.com/

Understanding Brain Dynamics for Color Perception Using Wearable EEG Headband

8 TP 10 Alpha and Bela Power

EEG data recorded ia
from muse l
840
L 50
4 \‘\4’ A A N () Wavelet a0
800 [\ /) WAL \ MIAA A /IR : ransfor 1s
o TN AAVA Data Cleaning 4
. J 0' A Vil
I AN
— ‘j’ [
o
760
i e e e mencs 14
Raw EEG data ¢
for all 4 channels 0
—

14

1s

AF7 Alpha and Beta Power o8

2255
AF 8 Alpha and Beta Power
A ™

/

2.255
TP 9 Alpha and Beta Power

2258

CASCON’20, November 10-13 2020, Toronto, Canada

Features fed directly to
the classifier without

K Nearest
Neighbors Red/Green/Blue
dimensionality T
reduction —»{ SHFEai Ye°‘°’ Red/Green/Blue
Machine

1 Correlation ’—> } Logistic Red/Green/Blue

Features reduction | Regression
—»{ Random Forest Red/Green/Blue
—»{ Neural Network Red/Green/Blue

Sadepilioed Red/Green/Blue
Classifier

Spectral |
Features

[Statistical

358 Features |

- Autoencoder Forwqrd
= selection

7

3.5

Alpha and Beta band power
of all 4 channels from CWT

~

Feature Extraction

Figure 2: The architecture used in the methodology.

Black Color Color Stimuli Black Color Color Stimuli
> — —
(2s) (2s) (2s) (2s)

>

Black Color Color Stimuli
Jaw Clench —> @s) — (2s)

I Repeat 20 times

Figure 3: The experiment protocol for data acquisition

3.2 Data cleaning and preprocessing

The raw EEG data is generally very noisy and it needs to be cleaned
and pre-processed in order to remove artifacts from it. In our
methodology, we cleaned the data in two steps. Firstly we ana-
lyzed the data using Matlab’s EEG lab software [5] and labeled
any visible unwanted spikes and noise manually from the data.
Secondly, we divided the data into small time windows of 50 ms
and computed the variance of data in each window, if it was more
than a selected threshold then the time window was flagged. We
also examined the individual subject’s data and used the trial that
has a minimum number of jaw clenches and eye blinks for further
experimentation.

3.3 Feature Extraction

Feature extraction is a very vital part of our problem. The use of raw
EEG data did not give good results in our experiment and so we
used Time-Frequency analysis to find frequency band coefficients
that were most relevant for our problem i.e. Alpha coefficients(8-
12Hz) and Beta coefficients(13-30Hz). In past works, [7, 10] Dis-
crete wavelet transform(DWT) has been used to extract the fre-
quency bands of interest. However in our case, we were not in-
terested in all the frequency bands, instead, we only considered
alpha and beta bands. The use of DWT would have given us an
improper breakdown of bands with the Alpha band in the range
of 8-16Hz and beta in range of 16-32Hz and therefore to avoid
this we used Continuous wavelet transform method as done in
[22, 32] to extract the bands of interest. The mother wavelet that
we used was the Morlet wavelet. The Morlet wavelet has a peak in
the center after which it tapers to the edges. The complex Morlet
wavelet can be obtained by the convolution of a Gaussian with a

15

sine wave and it is represented by the following equation:
w(t, f) 1)

where t is time, A=(c [\/ﬁ)_” 2 where o is duration of the
wavelet and f is the frequency of wavelet. We extracted the power
of alpha and beta bands from our EEG signal by convolution of
Morlet wavelets of frequencies ranging from 8Hz to 30Hz along
the whole signal at each time point. This was done with the help
of Fast Fourier Transform (FFT). For each frequency, we first per-
formed FFT of the signal and then the FFT of the Morlet wavelet.
We then performed the convolution of the two transformed signals
and applied Inverse Fourier transform to get the time-domain rep-
resentation of data. The magnitude of the complex transformed
signal was then extracted and it was squared to obtain the power
across all time points. The important thing here is that we rejected
the imaginary part as it gave us the phase information and the real
part just gave us the band-passed signal but what we were more
interested in was the power therefore we extracted the magnitude
of the complex signal. We got a spectrogram like representation of
the power of the signal, with columns denoting the time points and
rows denoting the frequencies from 8Hz to 30Hz. Figure 4 shows
the spectrograms for RGB colors. The Morlet wavelet helped to
reduce edge artifacts and noise from the data. It also helped to
obtain a balance in temporal precision and frequency precision.
The sampling rate of the signal and the Morlet wavelet was kept
the same in order to perform convolution. Figure 5 shows the EEG
data with and without the application of the Morlet wavelet. In Al-
gorithm 1 we summarize the procedure we followed to find alpha
and beta band power from the raw EEG signal. We removed the
flagged artifacts that we got in Data cleaning step after applying
the wavelet transform. This step was done after the transform was
applied so that we did not reduce the points below the sampling
frequency of 256Hz. The features were extracted from the remain-
ing data. The features accounted for the spectral, correlation as
well as statistical properties of the data which were normalized
using z-score. We experimented with different time windows of
length 100ms, 200ms, 500ms, 1000ms. Each window was taken
with a 50% overlap with the next window. Each window was used

=Axexp(— tZ/ZU%)exp(ant)

CASCON’20, November 10-13 2020, Toronto, Canada

22

Frequency
Frequency
o

2.6

Time(s)

2.6

Time(s)

C, Mahima, et al.

22

Frequency
o

2.6

3.4

Time(s)

Figure 4: Spectrograms of Red, Green, and Blue respectively. Each spectrogram is made by the EEG obtained from an average of 20
trials (also called Event-related potential) of Subject 1 from channel AF7. The spectrograms show that on the onset of activity at 2.4
sec there is an increase in the power of alpha and low beta frequency band in case of green and red however the power of alpha-band
decreases and that of low beta increases in case of blue on the onset of stimuli.

to extract a single row of features vector. The next feature vector
was obtained by moving the window half of its length.

Algorithm 1: How to extract alpha and beta band powers
from Raw EEG data from Morlet wavelet convolution
Input: Raw EEG data
Output: Alpha and Beta band power in form of spectrogram
1. Initialize the FFT parameters i.e. the minimum and
maximum frequency, the time period of the wavelet which
is equal to the sampling rate of the signal, the result matrix.
2. Find the FFT of the Raw EEG data.
3. while Frequency < MaxFrequency do
4. Create a complex morlet wavelet from frequency by
convolution of sine wave and gaussian.
5. Find the FFT of the wavelet.
6. Find the convolution of FFT of signal and FFT of
wavelet by pointwise multiplication.
7. Find inverse fourier transform of convoluted signal to
convert back to time domain.
8. Extract the magnitude of the complex signal and
square it to get the absolute power component of the
signal and add it to the result matrix.

end

’— EEG data

—— Morlet Wavelet-Transformed data |-

Signal (microvolts)

Time (s)
Figure 5: The original EEG signal and its Morlet-convolution
version using a wavelet of 30 Hz

3.3.1 Spectral features. These features were calculated by taking
into account the average power of each band, the variance in the
power of each band, and the hemispherical difference in each

16

band over a time window for each of the four channels. Thus we
got 18 features(8 average power coefficients for each channel, 8
variance power coefficient for each channel, and 2 hemispheric
difference coefficients) for each sample that was formed by a single
time window. This method was similar to the one followed in [7].
This set of spectral features are the most commonly used features
in many EEG related studies as they allow the model to evaluate
any potential changes in the absolute band power due to stimuli.

3.3.2 Pairwise Correlation features. In addition to the spectral fea-
tures, it is also important to study the correlation among different
frequency bands from different channels. We calculated this using
a pairwise correlation in each time window for each band and
each electrode. [7] follows this method too. We got a total of 28
correlation features using this method from a single time window.
These features were helpful to find cross-region similarity as some
of our data was discontinuous because of artifact removal.

3.3.3 Statistical Features. Features that represent the statistical
properties of the signal like Kurtosis, Skewness, Shannon Entropy
and Hjorth Parameters were also extracted.

Kurtosis, Skewness and Shannon Entropy . Kurtosis is a measure
of outliers in data. Data with less value of Kurtosis has less number
of outliers. The Skewness measures the asymmetry in data. The
entropy is a measure of information in data. We calculated each of
these parameters both for alpha and beta bands, therefore we got
24 features from these properties.

Hjorth Parameters. They are indicators of statistical properties
used in signal processing in the time domain introduced by Bo
Hjorth in 1970 [6]. We obtained 16 Hjorth parameters for alpha and
beta band for all 4 channels. We calculated two Hjorth parameters
namely, the mobility parameter as in equation 2 and complexity
parameter as in equation 3 on alpha and beta power bands that
we obtain from CWT.

dy(?)
ar=g;~

vary(t) @

Mobility =

Mobility

Mobility(y(1))

Here y(t) is the alpha or beta band power for a time window. We
got a total of 40 statistical features. Table 1 shows all the features

Complexity = 3

Understanding Brain Dynamics for Color Perception Using Wearable EEG Headband

Table 1: The features obtained from raw data.

CASCON’20, November 10-13 2020, Toronto, Canada

Avg. Power Var. Power Hem. diff Correlation Kurtosis Sknewness Shannon Hjorth
features features features features Entropy Parameters
Alpha TP9, TP10, TP9, TP10, |Left sensors- Cross corr of alpha TP9, TP10, TP9, TP10, TP9, TP10, TP9, TP10,
ang AFTAFS AF7,AF8 rightsensors| 0Ol PP AF7,AF8 AF7,AFS AF7,AF8 AF7,AF8
4) 4) 1) 4 4 4) 8)
Beta TP9, TP10, TP9, TP10, |Left sensors- Cross corr of alpha TP9, TP10, TP9, TP10, TP9, TP10, TP9, TP10,
Band AF7, AF8 AF7, AF8 right sensors| & beta of all senlzors AF7, AF8 AF7, AF8 AF7, AF8 AF7, AF8
4) 4) 1) 4 4 4) 8)
No. of 8 8 2 28 8 8 8 16
Features

obtained from raw EEG data. Figure 6 shows the visualization of
features in 2-D space by applying Linear Discriminant Analysis
[33]. It shows that the three classes are almost separable.

N

LDA Component 2

—a —3 —2 2 3 a

LBA Cor?’\ponelnt 1
Figure 6: Visualization of data of Subject 1 for a single trial in
2-D space using Linear Discriminant Ananlysis

3.4 Dimensionality reduction

The process of feature reduction is important because it has many

advantages like reduced training times, simplified and interpretable
models, reduced chances of overfitting i.e. lesser variance and less

impact of the curse of dimensionality. We performed feature selec-

tion/dimensionality reduction by two different methods. Firstly

we used the Forward Feature selection technique which is a super-
vised approach and secondly, we used Autoencoders [15] which is

an unsupervised approach for feature reduction. We elaborate on

them in the following subsection.

3.4.1 Forward Feature Selection. In this method, we started by
selecting one feature and calculating the metric value for each
feature on the cross-validation dataset. The feature offering the
best metric value was selected and appended to a list of features.
The process was repeated next time with two features, one selected
from the previous iteration and the other one selected from the
set of all features not present in the set of already chosen features.
The metric value(f-measure) was computed for each set of two
features and features offering the best metric value were appended
to the list of relevant features. This process was repeated until we
had the desired number of features. The number of features was
reduced to 10 features. The reduced feature set of size ten was
chosen after experimenting with feature sets of different sizes,

the top ten features gave the best balance between accuracy and
number of features.

3.4.2 Stacked Autoencoders for Feature Extraction. Autoencoders
are neural networks that can be used to reduce the data into a low
dimensional latent space by stacking multiple non-linear trans-
formations(layers). They have an encoder-decoder architecture.
The encoder maps the input to latent space and the decoder re-
constructs the input. The data in latent space is supposed to have
encoded the most important features and has a dimension lesser
than the original dimension of data. This data in the latent space
can be used as a reduced feature set and the models can be trained
on this data. The number of features was reduced to 10(similar to
that using forward feature selection) using a stacked autoencoder
structure shown in Figure 7. This architecture was chosen after an
exhaustive experiment with various architectures.

TAput_tayer
input| (None,46)

lecoder_layer
nput

utput (None, 18

lecoder_layer.
npu

utpul (None,32

Dgcoder_Tayer3/Output_layer
input| _(None,32)

P (None,46)
Figure 7: Final Autoencoder architecture used

3.5 Classification Task

We applied ML models on the 86 features that we extracted by
the procedure explained in Section 3.3. The classification task

CASCON’20, November 10-13 2020, Toronto, Canada

was done in two folds. We first considered the data from individ-
ual subjects and applied models to that data to perform intra-
subject classification for which we achieved an accuracy of 80.6%.
Intra-subject classification helped us to study subject-specific dif-
ferences of the EEG reactivity patterns. Then we considered the
combined data from all the subjects and performed inter-subject
classification and got an accuracy of 58.1%. The inter-subject case
helped us to make a more generalized model. The classification
was done in two ways and their performances have been com-
pared. We performed classification using the original feature set
as well as the reduced feature set from forward selection and au-
toencoders for both intra-subject and inter-subject. Below we
elaborate on the models that we have used along with the cho-
sen hyperparameters. We tuned the hyperparameters using Grid
Search. The range of hyperparameters chosen was based on previ-
ous works [7, 36].

3.5.1 K Nearest Neighbor (KNN). KNN is a non-parametric and
lazy learning algorithm. Non-parametric means there is no as-
sumption for underlying data distribution and that’s why we tested
it in our problem. K is a critical hyperparameter that we varied in
the range 4 to 8 in our experiment. The Euclidean distance was
used as the distance metric. As KNN is a lazy learner, therefore it is
not advisable to use it in our application, we use it for comparison
purposes only.

3.5.2 Logistic Regression (LR). We used logistic regression model
both with ridge and lasso regularization. We varied the parameter
C or penalty term in the range 0.01 to 100. We found out that lasso
regularization gave better results on our data.

3.5.3 Random Forest (RF). The random forest algorithm is an en-
semble approach that uses multiple decision trees and makes a
classification decision by voting from all the trees. The number of
estimators in our problem were varied from 10 to 100.

3.5.4 Atrtificial Neural Network (NN). We have used ANN with the
following architecture: First hidden layer with 300 neurons and
second hidden layer with 100 neurons. The activation function
used was sigmoid. L2 regularization had been used to avoid over-
fitting, with a regularization rate of 0.0001. The hyperparameter
tuning was done using grid search.

3.5.5 Support Vector Machine (SVM). SVM with RBF kernel has
been used in our experiment. The hyperparameters C and Gamma
were varied between 0.001 and 100 and 0.01 and 10 respectively.

3.5.6 Gradient Boosting (GB). Gradient boosting is an ensemble
learning approach that produces a prediction model in the form of
an ensemble of weak prediction models. Gradient boosting com-
bines weak learners into a single strong learner. In our Gradient
boosting model we varied the hyperparameter estimators from 10
to 100.

4 EVALUATION METRICS

Many metrics are used to evaluate ML Models like average accu-
racy, precision, recall, F-measure, ROC-AUC score, MCC score etc.
In our case, we used three metrics for performance evaluation
of our models- Average Accuracy, Average ROC-AUC score, and

18

C, Mahima, et al.

Average Matthews Correlation Coefficient (MCC). Since our data
is balanced i.e. each class has almost equal representation the
average accuracy score would have sufficed but we used the other
two additional metrics to verify the performance of our models.
We used scikit learn [24] library of python to evaluate the models.

4.1 Accuracy Score
The accuracy score in our problem was calculated as :

Nsamples—1 N
DO (7R
4
In equation 8, y; is the predicted value of the i-th sample and y;
is the corresponding true value and 1(x) is the indicator function.
Rsamples is the total number of samples. The accuracy indicates

the samples that were correctly classified from all the samples.

Average Accuracy Score(y, J) =
Nsample

4.2 ROC-AUC score

ROC-AUC stands for Receiver operator characteristics- Area under
the curve, it basically calculates the area under the receiver oper-
ator curve.The ROC curve is created by plotting the true positive
rate (TPR = %V) against the false positive rate (FPR = %)
at various threshold settings. We find the area under the curve to
evaluate our model. Since our problem is multiclass therefore we
computed the average AUC of all possible pairwise combinations
of classes using equation 5 as suggested in [17].

Average ROC-AUC Score = (AUC(jll)+AUC(k|j))

(5)
where c is the number of classes and AUC(j|k) is the AUC with j as
the positive class and k as the negative class and AUC(k|}) is vice
versa. In general, AUC(j|k) # AUC(k|j)) in the multiclass case.

2 _?2 s
clc-1)7J= 1 k>]

4.3 Matthews Correlation Coefficient

The Matthews correlation coefficient [12] is used to evaluate the
quality of binary and multiclass classifications. The MCC is a kind
of correlation coefficient value between -1 and +1. A coefficient of
+1 represents a perfect prediction, 0 an average random prediction
and -1 an inverse prediction. In the multiclass case, Matthews cor-
relation coefficient can be defined in terms of a confusion matrix
C for K classes. The MCC for multiclass as suggested in [18] is
calculated as follows:

cxs—Zkax Ly
McC= k

(6)

V&2 -2Kp) (2 - 3Ky
where 7} = Zf C; is the number of times class k truly occurred,
Pk = ZlKCki is the number of times class k predicted, ¢ = ZI]kak is
the total number of samples correctly predicted and s = Zf Z;(Cij
the total number of samples.

5 EXPERIMENT RESULTS

We performed two categories of classification namely, intra-subject
and inter-subject classification. For intra-subject classification, we
applied 5-folds cross-validation for data from five trials of each
subject and in the second classification, we applied leave out one

Understanding Brain Dynamics for Color Perception Using Wearable EEG Headband

CASCON’20, November 10-13 2020, Toronto, Canada

0.85
0.80
0.75
0.70
0.65

0.60

Average Accuracy Score

0.55

Average AUC-ROC Score

0.50

100ms 200ms 500ms

Time window(ms)

1000ms 100ms 200ms

Time window(ms)

0.6
0.5
0.4
0.3
0.2
0.1

Average MCC Score

0.0

—0.1

—0.2
500ms 1000ms 100ms 200ms 500ms

1000ms

Time window(ms)

Figure 8: Average Accuracy, Average ROC-AUC score and Average MCC score for different time windows for intra-subject classification

0.675

0.650

® e
s 8 0.625
2] 0.45 3
= 8 o.600
s ==
a3 5 0.575
8 0.40 S
P < 0.550
2 =3
S S 0.525 —
2 oss s —
< o.500
. X . R 0.4751 .
100ms 200ms 500ms 1000ms 100ms 200ms

Time window(ms)

Time window(ms)

0.35
—*— SVM 0.30
0.25
0.20
0.15

0.10

Average MCC Score

e 0.05

. . 0.00
500ms 1000ms . . . ‘
100ms 200ms 500ms 1000ms

Time window(ms)

Figure 9: Average Accuracy, Average ROC-AUC score and Average MCC score for different time windows for inter-subject classification

subject cross-validation where we trained the model on seven
subjects data and validated it using a single subject data and we re-
peated it for all subjects. The performance metrics that we used to
evaluate our model are average cross validation accuracy, average
ROC-AUC score, and average MCC. We report the results on the
complete dataset as well on the reduced dataset from dimension-
ality reduction techniques that we mentioned in Section 3.4. The
average accuracy, average AUC score, and average MCC score with
different time windows for both intra-subject and inter-subject
classification are shown in Figure 8 and Figure 9 respectively.

We got the best results for a time window of 200ms. We consid-
ered the time window of 200ms for further experimentation. We
discuss the results in three segments, the results without dimen-
sionality reduction, results after dimensionality reduction from
the forward selection algorithm and results after dimensionality re-
duction from Autoencoder. In the following subsections, we show
the results in Table 2-11, considering the average metric score
of all the subjects, the best metric score among all subjects and
the inter-subject metric score for the three metrics explained in
Section 4 . In all the tables the number in brackets is the standard
deviation. We have highlighted the highest metrics for each case
in all tables. The code for all the experiments is available online °.

5.1 Results without dimensionality reduction

Table 2 shows the accuracy score by using all features. We saw that
the Random Forest algorithm performed the best and Neural Net-
work and Gradient Boosting classifier also showed comparable re-
sults. The highest accuracy for an individual was 70.2% which was
reasonably better than the accuracy of random guess i.e. 33%. The
inter-subject accuracy of 56.8% was also very promising consider-
ing the fact that we applied leave one subject out cross-validation
in this case. The results were better for intra-class classification
which means that a customized model could be trained on an
individual’s data and then it can be used for predictions for a par-

Shttps://github.com/cmahima/MuseProject

ticular subject rather than using data from different people which
might also cause privacy issues.

Table 2: Accuracy by using all the features at 200ms time win-
dow.

Metrics KNN SVM Logistic Random Neural Gradient|
Regression Forest Network Boost
Avg Subject 0.414 0.474 0.506 (ggfg) 0.523 0.608
Accuracy (0.056)(0.018) (0.028) : (0.013) (0.057)
Best Subject 0.513 0.578 0.600 (gggﬁ) (gggg) (gggg)
Accuracy (0.021)(0.031) (0.022) :))
Inter-subject 0.338 0.377 0.408 (gggg) 0.490 0.472
Accuracy (0.033)(0.030) (0.030)) (0.033) (0.040)

In Table 3 we see the ROC-AUC scores. The highest average
score of 0.851 was achieved by the Random Forest classifier, the
average score of 0.803 was also better than an AUC score of 0.5 in
the case of a random classifier.

Table 3: ROC-AUC Score by using all the features at 200ms time
window

Metrics KNN SVM Logistic Random Neural Gradient
Regression Forest Network Boost
Avg Subject 0.552 0.514 0.676 (gg(l)g) 0.696 0.763
Auc score (0.019)(0.032) (0.027) : (0.035) (0.015)
Best Subject 0.600 0.620 0.710 (ggg(l)) 0.822 0.810
Auc score (0.043)(0.057) (0.037) : (0.024) (0.012)
Inter-subject 0.530 0.570 0.601 (gg:[;) 0.611 0.643
Auc score (0.039)(0.021) (0.046) : (0.035) (0.034)

CASCON’20, November 10-13 2020, Toronto, Canada

The MCC scores by using all features are in Table 4. A MCC score
of 0 means that the classifier is predicting randomly, in our case
the highest MCC score was 0.523 which was much higher than a
random prediction.

Table 4: MCC score by using all the features at 200ms time win-
dow

Metrics KNN SVM Logistic Random Neural Gradient
Regression Forest Network Boost
Avg Subject 0.120 0.291 0.310 (gggg) 0.303 0.433
MCC (0.050)(0.040) (0.041) ’ (0.056) (0.033)
Best Subject 0.203 0.333 0.318 (2353) 0.431 0.479
MCC (0.102)(0.070) (0.041)) (0.070) (0.091)
Inter-subject 0.207 0.1645 0.167 (gigg) 0.155 0.189
MCC (0.072)(0.057) (0.059)) (0.060) (0.058)

5.2 Results with Forward Feature Selection

We saw significant improvement in the results, especially for Ran-
dom Forest classifier, with the use of forward feature selection
which is a supervised feature selection technique. The irrelevant
and noisy features were removed and the feature set was reduced
to 10. This methodology helped us to curb the overfitting issue too
and thus the performance on the validation set improved. In Table
5 we see the average accuracy scores by using the top 10 features.
There was an increase in average accuracy by nearly 10% and we
got the highest accuracy of almost 80.6% which was much better
than any other previous approaches that have been used for EEG
classification using RGB colors using wearable devices. The aver-
age subject accuracy of 72% showed that the classifier performed
well for all the subjects. The average accuracy increased by 9.5%.
In this case, also the results of intra-subject classification were
better than that of inter-subject classification. The inter-subject
classification accuracy improved by 1.3%. Random Forest algo-
rithm had given us the best results in this case too with Neural
network and Gradient Boost with comparable performance.

Table 5: Accuracy by using 10 features by forward selection at
200ms time window

Metrics KNN SVM Logistic Random Neural Gradient
Regression Forest Network Boost
Avg Subject 0.492 0.487 0.492 (ggig) 0.513 0.597
Accuracy (0.038)(0.045) (0.028)) (0.036) (0.048)
Best Subject 0.615 0.604 0.590 (832?) 0.766 0.720
Accuracy (0.051)(0.028) (0.050)) (0.039) (0.035)
Inter-subject 0.377 0.366 0.388 (gzg;) 0.475 0411
Accuracy (0.013)(0.024) (0.012)) (0.040) (0.019)

20

C, Mahima, et al.

We see in Table 6 the AUC scores after forward feature selection.
The best AUC score increased by 0.037 and the average AUC score
has increased by 0.054. The MCC scores with forward feature se-
lection are in Table 7 which also increased. Thus forward feature
selection not only made our architecture efficient computationally
but also increased the overall performance of the architecture. In
fact, we got the best accuracy of 80.6% with the use of the Random
Forest classifier with forward selection.

Table 6: ROC-AUC Score by using 10 features by forward selec-
tion at 200ms time window

Metrics KNN SVM Logistic Random Neural Gradient
Regression Forest Network Boost
Avg Subject 0.546 0.588 0.688 (gggi) 0.699 0.740
Auc score (0.017)(0.034) (0.014) ' (0.033) (0.037)
Best Subject 0.775 0.670 0.712 (33(1);) 0.879 0.860
Auc score (0.018)(0.018) (0.045) : (0.011) (0.015)
Inter-subject 0.540 0.580 0.611 (gg;g) 0.610 0.632
Auc score (0.023)(0.062) (0.026) ' (0.025) (0.014)

Table 7: MCC score by using 10 features by forward selection at
200ms time window

Metrics KNN SVM Logistic Random Neural Gradient
Regression Forest Network Boost
Avg Subject 0.150 0.289 0.302 (gz;{l}) 0.437 0.310
MCC (0.030)(0.072) (0.037) : (0.031) (0.061)
Best Subject 0.531 0.346 0.364 (gg?g) 0.553 0.515
MCC (0.054)(0.054) (0.067) : (0.068) (0.056)
Inter-subject 0.017 0.189 0.197 (ggzg) 0.255 0.289
MCC (0.112)(0.051) (0.017) : (0.012) (0.043)

5.3 Results with Autoencoder

We applied autoencoder to observe how an unsupervised feature
reduction technique would work on our data. With the autoen-
coder, a reduced feature set of 10 was obtained. Using this reduced
feature set as input to the ML models, we achieved a lower average
CV accuracy in comparison to classification using forward feature
selection. Therefore autoencoders are not recommended for our
application. Table 8-10 show the metrics achieved with the use
of autoencoders. The highest accuracy we got was from Gradient
Boost classifier which was around 51%. This accuracy is far from
any practical use and very less when compared to the accuracy
from forward feature selection, thus we conclude that unsuper-
vised feature reduction technique of autoencoder does not work
well on our EEG data.

Understanding Brain Dynamics for Color Perception Using Wearable EEG Headband

Table 8: Accuracy by using 10 features by Autoencoder at 200ms
time window

Metrics KNN SVM Logistic Random Neural Gradient
Regression Forest Network Boost
Avg Subject 0.398 0.362 0.393 (23213(1)) 0.409 0.417
Accuracy (0.010) (0.026) (0.022)) (0.009) (0.000)
Best Subject 0.417 0.406 0.434 0.489 0.473 (3(5)(1)2)
Accuracy (0.000))(0.000) (0.000) (0.008) (0.024))
Inter-subject 0.358 0.348 0.347 0.397 0.355 (giig)
Accuracy (0.012) (0.027) (0.023) (0.017) (0.028) ’

Table 9: ROC-AUC Score by using 10 features by Autoencoder at
200ms time window

Metrics KNN SVM Logistic Random Neural Gradient
Regression Forest Network Boost
Avg Subject 0.501 0.499 0.518 (ggzz) 0.598 0.600
Aucscore (0.037)(0.012) (0.044)) (0.026) (0.017)
Best Subject 0.655 0.560 0.602 0.686 0.688 (g;?)(l))
Auc score (0.000)(0.018) (0.000) (0.007) (0.020) " °
Inter-subject 0.505 0.499 0.520 (gzig) 0.510 0.511
Aucscore (0.019)(0.062) (0.026)) (0.037) (0.036)

Table 10: MCC score by using 10 features by Autoencoder at
200ms time window

Metrics KNN SVM Logistic Random Neural Gradient
Regression Forest Network Boost
Avg Subject 0.099 0.189 0.191 (gﬁig) 0.218 0.199
MCC (0.019)(0.072) (0.026)) (0.039) (0.067)
Best Subject 0.261 0.267 0.213 0.229 (gﬁg;) 0.261
MCC (0.000)(0.000) (0.000) (0.027) ’ (0.000)
Inter-subject 0.015 0.024 0.022 (gﬁéi 0.120 0.115
MCC (0.022)(0.053) (0.051)) (0.054) (0.022)

In the results, we saw that the accuracies for inter-subject and
intra-subject classification varied. This can possibly be due to
inter-subject variability in EEG as suggested in [14, 16]. There
sometimes exits a variability in the amplitude of different EEG
peaks, so some people might show more excitability at given time-
points than others. There is also often a bit of variability in latency -
signals might vary in when they occur, but the range is pretty tight,
like 5-10ms either way. Thus these reasons may have resulted in
our model’s lower performance in inter-subject case.

The final proposed model for our application is that of Random
Forest classifier with forward feature selection. In Table 11 we

21

CASCON’20, November 10-13 2020, Toronto, Canada

compare our results with previous efforts that have been done to
classify EEG signals on the basis of color stimuli using wearable
EEG devices. In Figure 10 we show the ROC curve for the proposed
model with AUC-ROC score of individual classes for all the sub-
jects where 0 represents red, 1 represents green and 2 represents
blue.

Table 11: Performance of other methods on EEG classification
into color stimuli. Our aprroach shows 5-folds average accu-
racy value for intra-class classification

Best Average
Algorithms Accuracy

Martin Angelovski et al.[4] 53%
using 2 channel portable EEG ?
Sara Asly et al.[35, 36] 8%
using 4 channel portable EEG ?

Kyle Phillips et al.[26] 29.6%

using 14 channel emotiv EEG o

Rakshit et al.[27]
using 10 channel medical EEG 81.2%
Our approach using 4 channel portable EEG 80.6%

6 CONCLUSIONS AND FUTURE WORK

We have used EEG signals from a wearable consumer-grade EEG
headband to classify the raw EEG data into three classes of col-
ors, red, green, and blue. In our approach, we focussed mainly
on Alpha and Beta frequencies and discarded all other lower and
higher frequencies which otherwise would have added noise to
the data. We extracted various spectral, correlation and statistical
features from the data and apply ML models to it. Our proposed
model of Random Forest with forward feature selection showed
significant improvement when compared to previous approaches.
Our methodology achieved an improvement of almost 20% in the
average accuracy of classification.

Despite having a fewer number of electrodes Muse performed
well in the classification task and gave promising results. The intra-
class classification accuracy of 80.6% shows that wearable devices
can be used in integrated IoT frameworks where they can be used
in various control applications. The IoT pipeline for this applica-
tion must take into account the data preprocessing and feature
extraction in real-time. The time window for our particular applica-
tion was small to capture the effect of color stimuli only and avoid
unnecessary artifacts in data. This time-window might vary for dif-
ferent applications. One drawback of Muse that we encountered
during experiments was that it cannot be worn for a long time due
to comfort issues and also the connection can become weak some-
times however one can overcome this problem by applying water
to the channels. With the advancement in wearable computing,
more comfortable devices are now available that would not bother
one if used for a longer time like the new Muse S headband. The
Muse 2 device is also sensitive to muscle movements but that is
not an issue in our application as we are only interested in a small
time window of data when a person focuses on a color. Our work

CASCON’20, November 10-13 2020, Toronto, Canada

ROC for Subject 1 ROC for Subject 2

C, Mahima, et al.

ROC for Subject 3 ROC for Subject 4

1.0 e ————c 1.0 o~ e 1.0 — 1.0
G B
s g L e
208 > 908 e 208 2 208
g s L £ - kS
tos 2os)] 7 2os tos
] > e D , ‘,4’ B . -7 E <&
€04 - - - micro-average ROC curve (area = 0.87) €04 .77 -+ - micro-average ROC curve (area = 0.90) €04 - micro-average ROC curve (area = 0.83) €04 micro-average ROC curve (area = 0.75)
] ==+ macro-average ROC curve (area = 0.88)] 9 - macro-average ROC curve (area = 0.91) g = macro-average ROC curve (area = 0.83) g = macro-average ROC curve (area = 0.75)
= 0.2 ROC curve of class 0 (area = 0.86) = 0.2 ROC curve of class 0 (area = 0.91) = 0.2 ROC curve of class 0 (area = 0.83) = ROC curve of class 0 (area = 0.79)
- ROC curve of class 1 (area = 0.89) - ROC curve of class 1 (area = 0.91) - ROC curve of class 1 (area = 0.81) 0.2 ROC curve of class 1 (area = 0.78)
00 L ROC curve of class 2 (area = 0.88) 00 L ROC curve of class 2 (area = 0.90) 00 L ROC curve of class 2 (area = 0.86) v . ROC curve of class 2 (area = 0.69)
0.0 02 04 06 08 1.0 0.0 02 04 0.6 0’8 1.0 0.0 02 0.4 06 08 1o %Q% 02 04 0’6 08 10
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Subject 5 ROC for Subject 6 ROC for Subject 7 ROC for Subject 8
1.0 10 1.0 1.0
_fﬂ‘?’ . PLLA
P A e
208 ,,.,/——y 208 o 208
& g L & el e
P — - o -7 206
206 - 2 - 2
= 7 -7 El e @
G s i} - 2 s
& - micro-average ROC curve (area = 0.78) § micro-average ROC curve (area = 0.81) €04 micro-average ROC curve (area = 0.77) + micro-average ROC curve (area = 0.82)
g - macro-average ROC curve (area = 0.78) 3 - macro-average ROC curve (area = 0.80) Kl macro-average ROC curve (area = 0.77) = macro-average ROC curve (area = 0.83)
= = = ROC curve of class 0 (area = 0.88) = ROC curve of class 0 (area = 0.78) ROC curve of class 0 (area = 0.83)
ROC curve of class 0 (area = 0.80) 0.2
ROC curve of class 1 (area = 0.78)] ROC curve of class 1 (area = 0.80) ROC curve of class 1 (area = 0.74) ROC curve of class 1 (area = 0.84)
e - ROC curve of class 2 (area = 0.74) :‘ - ROC curve of class 2 (area = 0.78) - ROC curve of class 2 (area = 0.82)
L ROC curve of class 2 (area = 0.75) 0.0 4 0.0+~ 0.0 £2
0.0, ~0.0 0.2 0.4 0.6 0.8 1.0 “0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10
0.0 0.2 0.4 0.6 0.8 1.0 False Positive Rate False Positive Rate

o False Positive Rate
False Positive Rate

Figure 10: The ROC-AUC curve using our proposed architecture for all the subjects

has thus highlighted the capability of these wearable devices to
detect and classify the EEG signal on the basis of color stimuli and
the results are encouraging. This study opens up a new door to
integrate these devices in our day to day lives to use brain signals
to control various devices.

REFERENCES

1]

2

3]

(4

[5

(6

[7

(8

[9

[10]

[11]
[12]

[13]

(14]

[15]

[16]

Diane Aclo et al. 2015. EEG-based Color Classification System using Artificial
Neural Networks. LPU-Laguna Journal of Engineering and Computer Studies
(10 2015).

Eman Alharbi, Saim Rasheed, and Seyed Buhari. 2016. Feature selection al-
gorithm for evoked EEG signal due to RGB colors. In 2016 9th International
Congress on Image and Signal Processing, BioMedical Engineering and Informat-
ics (CISP-BMEI). 1503-1520.

Mohammad Almogbel, Anh Dang, and Wataru Kameyama. 2018. EEG-signals
based cognitive workload detection of vehicle driver using deep learning. In
2018 20th International Conference on Advanced Communication Technology
(ICACT). 256-259.

Martin Angelovski et al. 2012. Application of BCI Technology for Color Prediction
Using Brainwaves. ICT Innovations 2012, Web Proceedings ISSN 1857-7288 (09
2012).

Scott Makeig Arnaud Delorme. 2004. EEGLAB: an open source toolbox for anal-
ysis of single-trial EEG dynamics including independent component analysis. J
Neurosci Methods (2004).

Hjorth B. 1970. EEG analysis based on time domain properties. Electroen-
cephalogr Clin Neurophysiol. 227 (1970), 306-310.

Pouya Bashivan, Irina Rish, and Steve Heisig. 2016. Mental State Recognition
via Wearable EEG. CoRR (2016).

Alberto Bozal. 2017. Personalized Image Classication from EEG Signals using
Deep Learning. Master’s thesis.

Maher Chaouachi, Iméne Jraidi, and Claude Frasson. 2011. Modeling Mental
Workload Using EEG Features for Intelligent Systems. In User Modeling, Adap-
tion and Personalization. 50-61.

Thiago da Silveira, Alice Kozakevicius, and Cesar Rodrigues. 2016. Automated
drowsiness detection through wavelet packet analysis of a single EEG channel.
Expert Systems with Applications 55 (03 2016).

‘Wm Dobelle. 2000. Artificial Vision for the Blind by Connecting a Television
Camera to the Visual Cortex. ASAIO journal (01 2000), 3-9.

Baldi Pierre et al. 2000. Assessing the accuracy of prediction algorithms for
classification: An overview. Bioinformatics (Oxford, England) (06 2000), 412-24.
Chris Berka et al. 2004. Real-Time Analysis of EEG Indexes of Alertness, Cogni-
tion, and Memory Acquired With a Wireless EEG Headset. International Journal
of Human—Computer Interaction 17, 2 (2004), 151-170.

Galin D et al. 1982. Sex and handedness differences in EEG measures of hemi-
spheric specialization. Brain and Language (1982).

K. Han et al. 2018. Autoencoder Inspired Unsupervised Feature Selection. In
2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2941-2945.

Richard J. Riding et al. 1997. Cognitive Style and Individual Differences in EEG
Alpha During Information Processing. Educational Psychology (1997).

10

22

[17]

18

[19

[20

[21

[22

[23

[24

[25
[26

[27

[28

[29

[30

[31
[32

[33

[34

[35

[36

David Hand et al. 2001. A Simple Generalisation of the Area Under the ROC
Curve for Multiple Class Classification Problems. Hand, The (11 2001), 171-186.
Gorodkin J. 2004. Comparing two K-category assignments by a K-category
correlation coefficient. Comput Biol Chem (2004), 367-374.

Jason Johannesen, Jinbo Bi, Ruhua Jiang, Joshua Kenney, and Chi-Ming Chen.
2016. Machine learning identification of EEG features predicting working mem-
ory performance in schizophrenia and healthy adults. Neuropsychiatric Electro-
physiology 2 (12 2016).

Zuzana Koudelkové and Martin Strmiska. 2018. Introduction to the identifica-
tion of brain waves based on their frequency. MATEC Web of Conferences (01
2018), 05012.

Olav Krigolson, Chad Williams, and Francisco Colino. 2017. Using Portable
EEG to Assess Human Visual Attention. International Conference on Augmented
Cognition (05 2017), 56-65.

Hyeon Kyu Lee and Young-Seok Choi. 2019. Application of Continuous Wavelet
Transform and Convolutional Neural Network in Decoding Motor Imagery Brain-
Computer Interface. Entropy 21 (12 2019), 1199.

Chin-Teng Lin et al. 2007. EEG-Based Assessment of Driver Cognitive Responses
in a Dynamic Virtual-Reality Driving Environment. IEEE transactions on bio-
medical engineering 54 (08 2007), 1349-52.

F Pedregosa et al. 2011. Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research 12 (2011), 2825-2830.

J. Peirce et al. 2019. PsychoPy2: Experiments in behavior made easy. (51 2019).
Kyle Phillips, Olli Fosu, and Ismail Jouny. 2015. Separation and classification
of EEG responses to color stimuli. In 2015 41st Annual Northeast Biomedical
Engineering Conference (NEBEC). 1-2.

Arnab Rakshit and Rimita Lahiri. 2016. Discriminating different color from EEG
signals using Interval-Type 2 fuzzy space classifier. In 2016 IEEE Ist Interna-
tional Conference on Power Electronics, Intelligent Control and Energy Systems
(ICPEICES). 1-6.

Saim Rasheed and Daniele Marini. 2015. Classification of EEG Signals Produced
by RGB Colour Stimuli. Journal of Biomedical Engineering and Medical Imaging
(10 2015).

Concetto Spampinato et al. 2017. Deep Learning Human Mind for Automated
Visual Classification. CVPR 2017 (09 2017).

Jason Teo and Jia Chia. 2018. EEG-based excitement detection in immersive en-
vironments: An improved deep learning approach. AIP Conference Proceedings
(09 2018), 020145.

David Vivancos. 2018. MindBigData, The Imagenet of the Brain. (51 2018).
Hao Wang et al. 2010. The continuous analysis of EEG’s alpha wave by morlet
wavelet transform. National Center for Biotechnology Information (08 2010),
746-8, 752.

Jieping Ye. 2007. Least squares linear discriminant analysis. Proceedings of the
24th international conference on Machine learning (01 2007), 1087-1093.
Huiran Zhang and Zheng Tang. 2011. To judge what color the subject watched
by color effect on brain activity. In IJCSNS International Journal of Computer
Science and Network Security. 80.

Sara Asly. 2019. Supervised learning for classification of EEG signals evoked by
visual exposure to RGB colors. Ph.D. Dissertation.

Sara Asly, Luis Moctezuma, Monika Gilde, and Marta Molinas. 2019. Towards
EEG based classification of RGB color-based stimuli. 8th Graz Brain-Computer
Interface Conference (09 2019).

Towards Interpretable and Maintainable Supervised Learning
Using Shapley Values in Arrhythmia

Sanjena Krishnakumar
Ryerson University
Toronto, Ontario, Canada
sanjena.krishnakumar@ryerson.ca

ABSTRACT

This paper investigates the application of a model-agnostic inter-
pretability technique, Shapley Additive Explanations (SHAP), to
understand and hence, enhance machine learning classification
models using Shapley values in the prediction of arrhythmias!.
Using the Arrhythmia dataset?, three different feature selection
techniques, Information Gain (IG), Recursive Feature Elimination-
Random Forest (RFE-RF), and AutoSpearman, were used to select
features for machine learning models to predict the arrhythmia
class. Four multi-class classification models, Naive Bayes (NB), k-
Nearest Neighbours (kNN), Random Forest (RF), and stacking het-
erogeneous ensemble (Ensemble) were built, evaluated, and com-
pared. SHAP interpretation method was applied to find reliable
explanations for the predictions of the classification models. Ad-
ditionally, SHAP values were used to find ‘bellwether’ instances
to enhance the training of our models in order to improve their
performances in the prediction of arrhythmia. The most stable and
top-performing classification model was RF, followed by Ensemble
in comparison to NB and kNN. SHAP provided robust and reliable
explanations for the classification models. Furthermore, improving
the training of our models with ‘bellwether’ instances, found using
SHAP values, enhanced the overall model performances in terms of
accuracy, AUC, and F1 score. In conclusion, we recommend using
SHAP value explanations as a robust and reliable method for local
model-agnostic interpretability and to enhance machine learning
models for arrhythmia prediction.

KEYWORDS

SHAP, LIME, Shapley value, local model-agnostic interpretation,
bellwether, multi-class classification, machine learning, healthcare,
arrhythmia

ACM Reference Format:
Sanjena Krishnakumar and Tamer Abdou. 2020. Towards Interpretable and
Maintainable Supervised Learning Using Shapley Values in Arrhythmia.

This paper was written as part of the Certificate in Data Analytics, Big Data, and
Predictive Analytics at Ryerson University
Zhttps://archive.ics.uci.edu/ml/datasets/Arrhythmia

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honoured. For all other uses, contact the owner/author(s).

CASCON’20, November 10-13 2020, Toronto, Canada

© 2020 Copyright held by the owner/author(s).

23

Tamer Abdou
Ryerson University
Toronto, Ontario, Canada
tamer.abdou@ryerson.ca

1 INTRODUCTION

Arrhythmia is a cardiac condition in which the heart beats abnor-
mally. There are several types of arrhythmia with varying severity:
asymptomatic to causing sudden cardiac deaths (SCD). According to
CANet, SCD due to arrhythmia causes about 40,000 deaths annually
in Canada and was expected to be the top cause of morbidity and
mortality in 2020%. The electrocardiogram (ECG) measures the elec-
trical activity of the heart and is important for accurate diagnoses,
preventive measures, and treatments for patients with arrhythmia.
Machine learning algorithms would further help deepen our under-
standing of arrhythmia and further improve the accuracy and pre-
cision of medical diagnoses. In healthcare and medicine, physicians
and clinicians require explanations and transparency in diagnosing
medical conditions. However, complex machine learning models
are often black box models that lack interpretability, making them
difficult to trust in practice even though these models often have
high accuracies. Therefore, interpreting these models is invaluable
for clinicians in understanding how the models’ predictions are
decided using features and their values as well as improving model
performances to provide more reliable medical diagnoses.

Local Interpretable Model-agnostic Explanation (LIME) is a valu-
able method using local surrogate models to explain individual
predictions of a model [18]. LIME uses one explanation model on
different prediction models [18]. However, its disadvantages include
the neighbourhood of a data point of interest being large, its incon-
sistency and instability of explanations for two close data points,
and repeating sampling could result in different explanations, mak-
ing it hard to trust their explanations [15, 18]. However, Shapley
Additive Explanations (SHAP) overcomes these shortcomings by
using Shapley value, where the difference between an instance’s
prediction and average prediction of a dataset is fairly distributed
among the feature values to provide exact explanations [18]. More-
over, SHAP provides more reliable explanations for models by in-
tegrating LIME and Shapley value, coming from coalitional game
theory [15, 18]. Since calculating Shapley values is computationally
expensive, SHAP approximates the Shapley values using a speci-
fied number of samples from the dataset [15, 18]. Furthermore, the
additive property of LIME in SHAP allows for global interpreta-
tion methods using aggregations of Shapley values on prediction
models [18]. Therefore, SHAP would be a reliable and robust lo-
cal model-agnostic method for the interpretation of arrhythmia
prediction models in this study.

Shttps://canet-nce.ca/

https://doi.org/10.1145/nnnnnnn.nnnnnnn

CASCON’20, Nov 10-13, 2020, Toronto, Canada

‘Bellwether’ instances are examples within a dataset that could
be used to train machine learning models to provide better pre-
dictions for other data points and reduce the instability of class
predictions [11, 12]. Additionally, the feasibility and effectiveness
of using ‘bellwether’ instances to improve prediction models in ar-
rhythmia will be investigated. Using ‘bellwether’ examples would
bring forth valuable instances while reducing undesirable noise
and erroneous data, due to example mistyping, within datasets to
build enhanced machine learning models. Therefore, we propose
to evaluate four different multi-class classification models, employ
SHAP for model interpretability, and use its Shapley values to dis-
cover ‘bellwether’ instances to enhance the proposed models and
their performances. Here are the research questions for this study:

RQ1: How do the classification models perform and compare in
predicting arrhythmia?

What interpretations for the applied classification models are
found using local model-agnostic Shapley value explanations,
and how reliable is this method?

How does selecting ‘bellwether’ instances using SHAP val-
ues improve the classification models for the prediction of
arrhythmia?

RQ2:

RQ3:

This paper will firstly discuss the heart, ECG, and arrhythmias,
works related to this paper, and the methodology for dimension-
ality reduction, building of different classification models for the
prediction of arrhythmia, interpreting these models using SHAP,
and improving these models using ‘bellwether’ instances found
using Shapley values. Next, in results, feature subsets found from
feature selection, the evaluation of the classification models, local
and global interpretation of the models using SHAP, and the evalua-
tion of ‘bellwether’ training instances to improve these models will
be presented. Lastly, this paper concludes with threats to validity,
and conclusion and future work.

2 BACKGROUND AND RELATED WORK
2.1 Heart, ECG, and Arrhythmias

The contraction and relaxation of the heart are independent of the
nervous system, where the nervous system controls the increase
and decrease of the heart rate [23]. The heart has four chambers:
left atrium, left ventricle, right atrium, and right ventricle (Figure 1).
Electrical activity starts at the sinoatrial (SA) node and propagates
through the heart muscle [16]. First, depolarization starts at the SA
node, seen in Figure 1, and the rapid conduction of depolarization
occurs through the atria (upper two heart chambers) [23]. This
wave of depolarization moves through the internodal pathways,
causing atrial contraction. Next, depolarization slows down at the
atrioventricular (AV) node, resulting in a delay between the atrial
and ventricular contractions, allowing blood to flow from the atria
into the ventricles (lower two heart chambers) [23]. The depolar-
ization wave then moves through the Bundle of His, left and right
Bundle Branches and Purkinje fibers, where the ventricles depolar-
ize and contract starting from the apex (bottom of the heart) and
moving towards the systematic and pulmonary circulation (top,
back of the heart). The heart relaxes and this cycle repeats itself.
The electrical activity from the heart creates electrical currents
on the surface of the body that fluctuate the electrical potential of
the skin, which could be detected by pairs of leads placed on the

24

S. Krishnakumar and T. Abdou

Internodal
Pathways

Left

Atrium
Right
. Left
Atrium Purkine Ventricle
A Fibres
Right
Ventricle

Bundle
Branches

Elctrocardiogram (mV)

Timo (soc)

Figure 1: Anatomy of the Heart and ECG for Normal Heart
Rhythm [23]

body and recorded as a pattern by an electrocardiogram (ECG) [16,
23]. The 12-lead ECG uses 10 electrodes placed on the chest, arms,
and legs. The difference in electrical potential between these leads
helps construct the ECG signal [16, 23]. The waves shown by an
ECG correspond to the electrical activity of the heart: atrial depo-
larization (P wave), ventricular depolarization (QRS complex wave)
and ventricular repolarization (T wave) [16, 23]. Figure 1 shows
a normal heartbeat pattern with a P wave, QRS complex, and T
wave [23]. The P wave shows the contraction of atria (depolariza-
tion) while atrial relaxation (repolarization) is masked by the QRS
complex [23]. The QRS complex shows ventricular contraction (de-
polarization) and is large due to the ventricles having larger tissue
mass to pump blood to the lungs and body [23]. Lastly, the T wave
shows ventricular relaxation (repolarization) [23].

However, the presence of arrhythmias can drastically change
these wave patterns [16]. Arrhythmia varies depending on its rate,
origin, and other characteristics. Heart rates can be slow (brady-
cardia), normal, or fast (tachycardia) [23]. It can originate from the
SA nodes, AV nodes, supraventricular, or ventricular regions. The
heart size can also affect heart rates, like in hypertrophy, where
the heart is too large, which could be atrial or ventricular. Heart
diseases affecting coronary circulation include ischemia, injury,
and infarction [23]. Different arrhythmias vary in its speed, origin,
and severity from asymptomatic to life-threatening. Therefore, dif-
ferentiating types of arrhythmia from normal heart rates in ECG
recordings using multi-class machine learning models to detect
specific arrhythmias is vital for early diagnoses, preventative treat-
ments, interventions, and medications for arrhythmic patients.

2.2 Related Work

In 1997, Guvenir et al. developed a classification algorithm, the
Voting Feature Intervals (VFI5), to distinguish regular heart rate
and different arrhythmias from ECG recording measurements in
the Arrhythmia dataset [8]. The VFI5 obtained 62% and 68% (with
feature weights) accuracies, performing better than Naive Bayesian
(NB) and Nearest Neighbor (kNN) classifiers with 50% and 53%
accuracies [8]. However, these accuracies can be considered low in
the present-day, and other performance measures, like sensitivity,
specificity, and AUC, were not reported. Our study also uses this
Arrhythmia dataset [5, 8].

Towards Interpretable and Maintainable Supervised Learning Using Shapley Values in Arrhythmia

With recent technological advancement and more health moni-
toring devices, larger volumes of ECG data with high dimension-
ality are being collected from homes and hospitals [20]. These
large volumes of data require efficient and accurate detection of
arrhythmias and arrhythmic events from ECG recordings and using
machine learning algorithms could help physicians and cardiolo-
gists better diagnose arrhythmia efficiently [20]. High-dimensional
datasets are standard in the biomedical and healthcare fields and
often include irrelevant and redundant features for class predic-
tion, increasing computational costs and decreasing performance
of predictive models [2, 9]. Feature selection methods retain data
interpretability without transforming the reduced original features
and have shorter computational time. In contrast, feature extraction
transforms original features to a reduced number of new features
and has higher discriminatory power but loses the original data
interpretability and is computationally more expensive [9]. Stud-
ies investigated feature selection methods for binary classification
using the Arrhythmia dataset, such as the contribution-selection
algorithm (CSA) with backward elimination that resulted in a 21-
feature subset with 84% accuracy and grafting algorithm with 75%
accuracy [4, 21]. Although these studies used binary classification,
our paper investigates feature selection techniques to choose a
feature subset for multi-class classification with 13 classes.

Feature selection includes filter, wrapper, and hybrid methods.
Information Gain (IG) and Recursive Feature Elimination-Random
Forest (RFE-RF) perform well among the filter and wrapper feature
selection techniques, respectively [10]. These two methods are ap-
plied to the Arrhythmia dataset to help find a proper feature subset
to train prediction models. Hybrid, like embedded, methods tend to
perform computationally better than wrapper techniques [2, 9, 10].
AutoSpearman is a hybrid method that removes correlated vari-
ables while retaining information about the class [10]. It improved
classifiers’ accuracy by 1-2% and was highly consistent for software
defects metrics [10]. As AutoSpearman has not yet been applied
to healthcare, our study investigates its effectiveness for a high-
dimensionality reduction in arrhythmia.

Parvaneh et al. found studies using deep learning algorithms
for predicting arrhythmia had often not reported computational
efficiencies of the models and model interpretability had not been
investigated, which are essential as more complex models often
require more computational time and are more difficult to inter-
pret [13, 14, 20]. Also, traditional supervised models often perform
well but can be overlooked. Lessmann et al. compared supervised
learning algorithms, performance measures and statistical hypoth-
esis tests for credit scoring amidst the current technical advance-
ments [13]. Dynamic ensemble classifiers predicted less accurately
than simple models, multiple classifiers obtained high accuracy, and
Random Forest (RF) performed well [13, 14]. Li et al. updated this
study, benchmarking 17 classification models using 27 datasets and
focusing on class distribution sampling, performance measures and
testing procedures for software defect prediction [14]. RF was found
to be one of the top-performing classifiers, NB as one of the lowest,
and kNN was found among the top ten performing classifiers for
software defect prediction [14].

Moreover, Li et al. emphasized the importance of model com-
prehensibility as well [14]. Accurate interpretations of a model’s
predictions enable users to trust the prediction model, discover

25

CASCON’20, Nov 10-13, 2020, Toronto, Canada

insights into improving the model, and understand the process
behind a model [15]. Machine learning interpretation methods are
applied to interpret black box models [18]. Model-specific methods
rely on the inner workings of prediction models and thus, different
methods are required to interpret different types of prediction mod-
els; whereas, model-agnostic interpretation methods are flexible
and can be applied on different types of prediction models as it only
depends on the data and prediction function [18]. Therefore, model-
agnostic techniques separate the type of interpretable model from
the type of prediction models [18]. While global surrogate inter-
pretable models are applied to approximate a model’s predictions,
local surrogate interpretable models interpret a model’s individual
predictions [18].

Local interpretable model-agnostic explanations (LIME) is a
method applying local surrogate models to explain a model’s indi-
vidual predictions [18]. These models ensure good local approxima-
tion but not global approximation [18]. LIME’s advantages are: one
explanation model can be applied on different prediction models,
it is easy to use, and it can be trained with interpretable features
that are different from the ones used in training the prediction
model [18]. Although LIME’s additivity property also makes this
method advantageous, its disadvantages include: the local neigh-
bourhood of a data point is unclear, the unstable and inconsistent
explanations in which two close data points can have widely vary-
ing explanations, repeating sampling could result in different ex-
planations, and missing features should have an attribution value
of 0 [15, 18]. This makes it difficult to trust its explanations. SHAP
overcomes these shortcomings by incorporating LIME with Shap-
ley value from coalitional game theory that calculates features’
marginal contributions to the difference between a machine learn-
ing model’s individual prediction and the average prediction for
the dataset [6, 15, 18]. SHAP allows for contrasting and full expla-
nations, its efficiency property ensures the difference between a
prediction and the average prediction is fairly distributed among
feature values that is not found with LIME, it provides reliable and
reasonable explanations based on game theory and has efficiency,
symmetry, dummy, and additivity properties [15, 18]. Shapley value
satisfies all three properties, local accuracy, missingness, and con-
sistency; however, methods not based on Shapley value are not
guaranteed to fulfill all these properties [6, 15, 18]. El Mokhtari et
al. employed SHAP interpretation method and SHAP values to find
the features that most contributed in the prediction of commen-
taries with financial time series data and evaluated the impact of
additional datasets on models’ performances [6]. They compared
kNN, RF, Support Vector Machine (SVM), XGBoost, and Long Short-
term Memory Network (LSTM) and found binary kNN classifier
outperformed in terms of F1-score [6]. It was found the additional
Point of Sales (POS) dataset had not improved the classification
models’ performances that used the VAR, discrepancy dataset [6].
Moreover, using SHAP values as a data transformation method
allowed for a natural clustering that helped in the models’ accu-
racy [6].

Krishna used a project’s data that provided the best predictions
on other projects’ data as ‘bellwethers’ to mitigate conclusion in-
stability in software analytics [11]. The simple technique of using
‘bellwethers’ for transfer learners provided comparable predictions

CASCON’20, Nov 10-13, 2020, Toronto, Canada

to other transfer learning methods and provided stable conclu-
sions [11]. He described a ‘bellwether effect’ as a ‘bellwether’ (an
exemplary project existing within the historical dataset) to use
in training an accurate prediction model [11]. ‘Bellwether’ finds
reliable data and does not restrict leveraging the full benefits of
the model [11]. Models trained from specialized regions within a
dataset sometimes performed better than those trained across all
data [11]. Highly competitive performances were obtained using
the ‘bellwether’ dataset, RF, and four evaluation metrics: accuracy,
recall, precision, and F1 score [11]. In addition, effect-size tests
were employed to ensure that differences were not due to small
effects [11]. Kudjo et al. developed an algorithm using X-means clus-
tering algorithm and mean absolute error to select ‘bellwether, an
exemplar training set, for improved software quality’s vulnerability
severity prediction using four models, deep neural network, logistic
regression, kNN, and RF, and evaluation metrics included preci-
sion, recall, and F1 score [12]. The ‘bellwether’ approach showed
improved performance compared to benchmark techniques hav-
ing 14.3-97.8% for F1 score [12]. In this paper, Shapley values for
all instances in the Arrhythmia dataset, all classification model’s
predictions, and selected features were used to find and choose a
set of ‘bellwether’ instances for a training set for the classification
model using a minimum absolute Shapley value threshold.

3 METHODOLOGY
3.1 Dataset

The Arrhythmia dataset is open source and publicly available from
the UCI Machine Learning Repository [5] [8]. This dataset contains
279 features, an arrhythmia class attribute, and 452 observations,
where each observation represents a patient record and its class
determined by an expert cardiologist [8]. The features include: age,
height, weight, heart rate and 12-lead ECG recording measurements
of the patients using the IBM-Mt. Sinai Hospital program®.

This multi-class arrhythmia class contains 13 classes (three ad-
ditional classes had no instances and were not included): ‘nor-
mal’, coronary artery disease (CAD), old anterior myocardial in-
farction (OAMI), old inferior myocardial infarction (OIMI), sinus
tachycardy (ST), sinus bradycardy (SB), ventricular premature con-
traction (VPC), supraventricular premature contraction (SVPC), left
bundle branch block (LBBB), right bundle branch block (RBBB), left
ventricule hypertrophy (LVH), atrial fibrillation (AFib), and ‘other’.

3.2 Data Preparation

First, the Arrhythmia dataset was randomly partitioned into train-
ing and test sets using 70:30 ratio. This ensured that the test set was
independent of the training set [22]. This was performed for 10 iter-
ations using different seed numbers. Missing values were imputed
using medians and the kNN algorithm in a donor-based imputation
technique [25]. Zero-variance variables were also removed.

3.3 Dimensionality Reduction

To retain human interpretability for our prediction models, fea-
ture selection was chosen over feature extraction [2, 9]. Different
feature selection techniques were combined to incorporate three

“https://archive.ics.uci.edu/ml/datasets/Arrhythmia

26

S. Krishnakumar and T. Abdou

different perspectives in selecting features to predict the arrhythmia
class [2, 9, 10]. Three feature selection techniques were applied to
the training set: IG, RFE-RF, and AutoSpearman. The top features
with the highest information gain coefficients, the wrapper subset
with the highest accuracy, and features chosen by AutoSpearman
were found. Common features were chosen between: 1) IG and RFE-
RF, 2) IG and AutoSpearman, 3) RFE-RF and AutoSpearman, and 4)
IG, RFE-RF, and AutoSpearman. A feature subset was selected with
all common features among the three techniques and top common
features between each pair of techniques.

3.4 Class Imbalance

The arrhythmia class in the dataset was imbalanced. For a model
to learn to better differentiate and classify the minority arrhythmia
classes as well as correctly predict the majority ‘normal’ class, Syn-
thetic Minority Over-sampling Technique (SMOTE) was applied
on the training set [1, 3]. SMOTE was used for oversampling all
minority classes with synthetic examples and undersampling the
majority class [3]. Using different parameter values from the de-
faults for the SMOTE function improved performance measures
of the models [1]. Therefore, SMOTE was applied with different
sampling parameter values.

3.5 Training and Testing Classification Models

Figure 2 is a flowchart showing the three following steps: building
classification models, model interpretation, and improving classifi-
cation models with ‘bellwether’ training set.

1. Training and Testing Classifiers

[Predictions
2. Model Interpretation
Arrhythmia
Dataset

SHAP Value
Explanations

I 3. Improving Classifiers with ‘Bellwether”
[New Predictions J

Figure 2: Building, Interpreting, and Improving Classifica-
tion Models Flowchart

Feature Subset

[Training Data

Featu re Subset

Test Data

[Machine Learning

Model

Machine
earnlng Model

SHAP Interpretation
Model

‘Bellwether’ Training

Set Model

Test Data

(Machine Learning

Feature Subset

Four supervised learning classifiers, Naive Bayes (NB), k-Nearest
Neighbors (kNN), Random Forest (RF) and a heterogeneous stack-
ing ensemble (Ensemble), were trained to predict normal heart
rhythm and types of arrhythmia using 10-fold cross-validation on
the training set. 10-fold cross-validation ensured that there was no
overlapping of data used for learning and validation in the same
runs [22]. More advanced models often require more computa-
tional time and are more difficult to interpret [13, 14, 20]. Also,
traditional supervised models often perform well but can be over-
looked. Classification models could be categorized into six main
classes based on their underlying approaches: Bayesian, tree-based,
support vector machine, neural network, boosting and other [14].
To study how different machine learning algorithms act on the

Towards Interpretable and Maintainable Supervised Learning Using Shapley Values in Arrhythmia

Arrhythmia dataset, different types of classification models were
selected. Like Giivenir et al., this paper also explores the traditional
NB and kNN models. RF was found to be one of the top-performing
classifiers [13, 14]. Homogeneous ensemble models combine clas-
sifiers that act similarly as base models; whereas, heterogeneous
ensemble models combine classifiers that perform differently as
base models that have different perspectives on the same data and
are complementary [13, 14]. Therefore, the simpler traditional NB
and kNN models, top-performing homogeneous ensemble RF, and a
stacking heterogeneous ensemble (Ensemble) built using NB, kNN,
and RF algorithms were compared in the prediction of arrhythmia.

Using the ‘caret’ package [7], the optimal tuning parameters
found for NB model were ‘usekernel’ = TRUE for non-parametric
distribution and ‘adjust’ = 1 for bandwidth adjustment. Changing
‘fL’ for Laplace correction did not change the model’s performance
and was set to 1. For kNN model, it was necessary to preprocess
the data using “center” and “scale” to reduce the more significant
effect of large-value features on the predictions. The optimal tuning
parameter for the number of neighbours was ‘k’ = 5. For the RF
model, the optimal tuning parameter for the number of randomly
selected predictors was ‘mtry’ = 2. The same optimal parameters
were found for Ensemble’s base RF model and the ‘mtry’ for the
meta RF model was ‘mtry’ = 2 or 3. The trained classification models
were then tested using the test set that was initially separated from
the training set in data preparation.

To build the Ensemble model, the training set was split with a
ratio of 50:50 for training and validation sets. The base models were
trained using the training set and their predictions were made on
the validation and test sets. The meta model using RF algorithm was
trained using these predictions and the actual class of the validation
set. Lastly, the meta model made predictions using the base models’
predictions on the test set.

3.6 SHAP Value Explanations for Classification
Models

Partial Dependence Plot (PDP) is a global interpretable model that
illustrates the marginal effects of one or two features of a model’s
predictions [18]. Although heterogeneous effects in features are not
distinguished using PDPs, Individual Conditional Expectation (ICE)
curves and Accumulated Local Effects (ALE) plots find individual
predictions of a classification model and heterogeneous effects
become apparent [18]. However, ICE curves only show one feature
and ALE plots show the differences in predictions, where a higher
number of intervals produce less accurate explanations [18]. LIME
uses local interpretable models for individual explanations and is
additive [15, 18]. SHAP combines LIME and Shapley value to explain
individual predictions of models. SHAP was applied to interpret our
prediction models locally for individual predictions and globally for
arrhythmia class subsets because the approximated Shapley values
could be combined into global explanations [15, 18].

For each model, SHAP was run for each instance in the Arrhyth-
mia dataset to obtain a data frame of SHAP values, feature values,
prediction probabilities for every data instance, feature, and class.
The Shapley value comes from coalitional game theory and aims
to equitably distribute the payout among players in a game [18].
Here, the ‘game’ is the prediction of an instance, the *payout’ is

27

CASCON’20, Nov 10-13, 2020, Toronto, Canada

the difference between the prediction of the arrhythmia classes
minus the average predictions for the dataset, and the ‘players’ are
the features used to train our classification models. Therefore, we
want to determine how fairly distributed the contributions of the
feature values were in predicting the arrhythmia class for all the
applied classification models. For Ensemble, the ‘features’ were the
base models’ predictions and its interpretability explains how fairly
distributed the contributions of the base NB, kNN and RF models’
prediction values were in the prediction of the arrhythmia class.
SHAP values were used to provide an approximation of Shapley
values for models and observations using the R package ‘iml’ [19].

For each model and instance, SHAP values were calculated for
the selected features for the 10 iterations performed. The parameter
for the number of Monte Carlo samples was set to 20 to estimate
the Shapley values for more efficient computation. All the SHAP
values were combined into a data frame for each model. Since the
meta RF model in Ensemble makes a final prediction for the arrhyth-
mia classes using the base NB, kNN, and RF models’ predictions,
SHAP used these base models’ predictions as ‘features’ for Ensem-
ble model [19]. SHAP Feature Importance Plot uses the magnitude
of feature attributions [18]. For Feature Importance Plots, we plot-
ted the calculated mean SHAP values grouped by class and feature
for the dataset and then features were ordered by decreasing impor-
tance [18]. SHAP Summary Plots illustrated the feature importance
and feature effects [18]. Each point depicted the SHAP value for
a feature and instance, where its colour shows its feature value
from high to low [18]. Features were sorted by decreasing impor-
tance [18]. SHAP Dependence Plots illustrate the feature values
and their corresponding SHAP values [18].

3.7 Finding ‘Bellwether’ Training Set to
Improve Classification Models

Using the SHAP values data frame from the previous step for each
classifier and selected features to train the models, a minimum ab-
solute SHAP value threshold was chosen aimed in selecting around
70% of the dataset (or 323 instances) as ‘bellwether’ instances to
retrain and improve each classification model. The maximum num-
ber of ‘bellwether’ instances chosen was 403. Because SHAP values
determined the contribution of every feature for the individual pre-
dictions in each classification model, ‘bellwether’ instances were
chosen for each model’s new ‘bellwether’ training set.

SMOTE was applied to these ‘bellwether’ training sets with the
same parameters and feature subset as before from feature selection
and class imbalance to train the new classification models. The four
applied classification models, NB, kNN, RF and Ensemble were
retrained using these new ‘bellwether’ training sets to predict the
arrhythmia class using 10-fold cross-validation. These models were
evaluated using the same initial test sets that were partitioned
during data preparation. This was performed for the 10 iterations.

3.8 Evaluation of Classification Models

To include multiple perspectives and to reduce potential bias, the
models using the original and ‘bellwether’ training sets were eval-
uated using the following performance measures: accuracy, AUC,
macro specificity, macro precision, macro recall, macro F1 score,

CASCON’20, Nov 10-13, 2020, Toronto, Canada

and Cliff’s § effect size. Accuracy ((TP+TN) / (TP+TN+FP+FP)) mea-
sures how accurately a classifier correctly predicts a class. The AUC
measures recall (or sensitivity) (TP rate) versus 1-specificity (FP
rate) for the classifiers. Macro precision (TP / (TP +FP)) is the over-
all number of correctly classified positive instances divided by the
number of instances labelled as positive by the classifier. This is the
percentage of instances predicted as normal or any arrhythmia class
that were correctly predicted. Recall (TP / (TP + FN)) is the number
of correctly predicted positive instances divided by the number of
actual positive instances. Therefore, higher recalls have lower false
negatives. F1 score is the harmonic mean of precision and recall
and is effective when working with imbalanced datasets [12].

The Cliff’s § effect size from ‘effsize’ R package was used to
measure how often the accuracy of one classification model was
more significant than another model [17, 24]. Cliff’s § effect size is
a non-parametric measure that estimates the magnitude of signifi-
cant practical differences and determines the overlap between two
groups [12]. It is an accurate and reliable measure. The magnitude
thresholds for Cliff’s ¢ is found in Table 1 [12].

Table 1: Cliff’s ¢ Effect Sizes and Magnitude Thresholds [12].

Absolute Cliff’s § Effect Size ‘ Magnitude Thresholds

6 <0.112 negligible
0.112 £ § < 0.276 small
0.276 < § < 0.427 medium
6 > 0.427 large

Cliff’s § effect size statistically checks whether the classifiers
behave similarly to determine whether NB, kNN, and RF perform
differently enough to incorporate into a stacking heterogeneous
ensemble classification model. Additionally, the efficiency and sta-
bility of the classifiers were compared. Efficiency ensures classifiers
perform at a reasonable time, especially considering the increas-
ingly available ECG data. Increased stability of models provides
more robust, reproducible, and accurate results, all important in
diagnosing patients and ensuring classifiers do not overfit to the
training set.

4 RESULTS

4.1 Feature Subsets

Using IG, RFE-RF, and AutoSpearman feature selection techniques
resulted in feature subsets that varied across the 10 iterations. How-
ever, 14 features consistently appeared in the feature subsets for
more than 5 of the 10 iterations: heart rate (bpm), AVF’s average
width of Q wave (msec), V3’s number of intrinsic deflections, V1’s
area under the QRS complex (msec-mV), average QRS duration
(msec), average duration between onset of Q and offset of T waves
(msec), V6’s amplitude of T wave (mV), average duration between
two consecutive T waves (msec), V1’s number of intrinsic deflec-
tions, V3’s amplitude of R wave (mV), V4’s amplitude of T wave
(mV), AVR’s amplitude of T wave (mV), V3’s amplitude of the Q
wave (mV), and V3’s average width of the S wave (msec).

The recurrence of these features in the feature subsets suggests
that V1, V3, V4, V6, AVF, and AVR leads helped predict normal
heart rhythm and different types of arrhythmia. Additionally, the
widths of Q and S waves and amplitudes of T, R, and Q waves were

28

S. Krishnakumar and T. Abdou

most common in the feature subsets. Heart rate, lead V1’s area
under QRS complex (msec-:mV), and leads V1’s and V3’s number of
intrinsic deflections were also often found as useful in predicting
typical and different types of arrhythmia. Features involving leads
V2, DII, AVL, V5, and DI, widths of R, Q, R’, and S waves, and
amplitudes of R’, R, T, and S waves appeared less frequently in
these subsets. Luz et al. mentioned that R-R intervals, amplitude
and width of the T wave, and lead II were more important features
in diagnosing cardiac diseases while leads V1, V2, and V4 were
favoured for classifying ventricular related arrhythmias [16]. It is
seen that features using leads V1 and V4 and amplitude of T waves
were also found significant in our feature subsets for arrhythmia
prediction.

4.2 Evaluation of Classification Models

Comparing the models’ median accuracies over 10 iterations, RF
performed the highest with 75.97% accuracy, Ensemble performed
the second highest with 72.87% accuracy, NB had 67.83% accuracy,
and kNN performed the lowest with 52.72% accuracy, as shown
in Figure 5. However, RF and Ensemble models had statistically
significant accuracies with p-values (p < 0.0001) for all iterations.
The median AUCs shown in Table 3 were 0.7957 for NB, 0.7895 for
RF, 0.7869 for Ensemble, and 0.7594 for kNN, where NB, RF, and
Ensemble performed similarly and kNN slightly underperformed
in terms of AUC.

Table 2: Cliff’s § Effect Sizes and the Correlation Coefficients
Between the Pairs of Classifiers.

Classifier ‘ Cliff’s 6§ Estimate Correlation Coefficient

NB-kNN 0.96 -0.2057
NB-RF -1.00 -0.0149
kNN-RF -1.00 0.0994
NB-En -0.92 0.2335
kNN-En -1.00 0.3878
RF-En 0.96 -0.5177

The absolute Cliff’s § estimates were very large (confidence level
= 0.95) as shown in Table 2, indicating the classification models’
accuracy distributions showed no to minimal overlap according to
Kudjo et al. (Table 1) [12]. Since NB, kNN, and RF models’ accuracy
distributions show no to minimal overlap, this highlights a het-
erogeneous ensemble using the mentioned models could capture
varying aspects of the data to increase its performance. However,
we observe in this study that RF slightly outperformed Ensemble.

In terms of efficiency, the fastest classification model was kNN,
then NB, and both RF and Ensemble had longer training times
(Figure 6) (Microsoft Surface 2 Laptop with 16GB memory and
Intel(R) Core(TM) i7 processor, R version 3.6.0 running on Windows
10). Figure 7 illustrates while NB and kNN performed the least
consistently, RF and Ensemble performed the most consistently and
therefore, were the most stable for arrhythmia prediction.

4.3 SHAP Value Explanations for Classification
Models
Feature Importance Plots illustrate the average contributions of

features to the prediction of the arrhythmia classes. Figure 3 shows
Feature Importance Plots for the classifiers for the first iteration.

Towards Interpretable and Maintainable Supervised Learning Using Shapley Values in Arrhythmia

NB Model 1N Model
V'S Anpitude of Twave (mV) - | AVF's Averge vidhof @ wave (msec)
Hoart rao (pm) . Hoart rato (opm)
Average duration between onset of Q and offsat of T waves (msec) | __ 1 V3's Area undor QRST complex (msec mV)
AVR' Angitude of T wave (mV) N | Averago uraton botwsen two consacdive T waves (msec)
VI's Ampiude T wave (mV) 11 Averago curatin between onset of @ nd ofse of T weves (msec)
Vs Average width of S wave (msec) I AVR's Amgitd of T wave (mV)
Vs Average widh of R wave (msec) [Vs Average widh of S wave (msec)

Vs Number of nrisic deflections I
V2's Angitudo of R wave ()
Vs Ara undor QRST comple (msecmv)
Vs Ampitudo of R wave (mV) 1
Vs Number of nrinsic deflections LI
VA’ Avea undr RS compex (msoc V) 11
Averago QRS dutation (msoc) (|
AVF's Avaragowidih of Q wavo (msoc) I
Vs Ampitudo of R wave (mV) I
Va's Ampitudo of T wave (mV) 1
VA's Angitudo of Q wave (V)]
Avsrago urstionbetwoen two consaculv T wavos (msoc)

VB's Ampitudo of T wave (mV)
Va's Ampltudo of R wave (mV)
Va's Ampitude of T wave (mV)
V3's Amplitudo of R wave (mV)

V1's Ampitudo T wave (mV)

Vs A of e 1)

V1's Area under QRS complex (msecmV)

V3's Average width of R wave (msec) 1
V2's Ampitudo of R wave (mV)

008

zEEEEREERN SRERENRN
ARRRRREaRRERER)

00t 000 00t

Average curation batween onset of Q and offsa o T waves (msec)

008

CASCON’20, Nov 10-13, 2020, Toronto, Canada

RF Model

Ensemble Model
AVR's Amplitude of T wave (V)

V1's Number of intinsic defloctons.
Average QRS duration (msec)

AVF's Average width of Q wave (msec)
Hoart rate (bpm)

V3's Avoa undor QRST complex (msec mV)
V1's Ampltude T wave (V)

Bas0 RF modal's prodictions.

Ciass
V3's Averago width of R wave (msoc)
Coronary artery diseaso.

Ve's Amplitude of T wave (mV) Base kNN model' predictions.

V'S Ampitude of T wave (mV)

I ‘old anterior myocardial infarction
Vs A undor GRS complex (msoc V) [2 focr myooardal frcion
V3's Amplitude of R wave (mV) = ‘sinus tachycardy
Vs Averagawidih of S wave (msoc) b
Va's Number o tnnsic dfections -
P

Va's Ampliude of R wave (mV)
V3's Amplitude of Q wave (V)
Avorag duration botwoen two consocutive T waves (msec)
V2's Ampitudo of R wave (V)

Base NB modal' prodictions.

Mean Shapley Value

Figure 3: Feature Importance Bar Plots for NB, kNN, RF, and Ensemble Classifiers for Iteration 1.

coronary artery disease

VB Anpludeof Tuave () 0 0152)-
Hear m) (0.01659)-

AVRs Amplitude of Twavo () (001513

V1's Number of intrnsic deflections (0.01286) -

V3's Average width of Rwave (msec) (0.01243) -

Average duration between onset of Q and offset of Twaves (msec) (0.0118)-
V3's Average width of S wave (msec) (0.0113)-

V2's Amplitude of R wave (mV) (0.01063)-

s Amplitude T wave (mV) (0.01023)-

V3s Area undr QRST complox (msec?)0.01001)-

3 Number of sl defisctons (0,009

V3's Amplitude of Rwave (mV) (0.00846) -

Va's Amplitude of Twave (mV) (0. i)

VI's Arga under QRS complex (mstc’7
's Amplitude of Rwave (mV) (0.0¢

Average duration between o consutve T vaves P
AVF's Average widih of Qwave (msec)

V35 Ampilude of Gwave (mV)

00569)-
00449)-

sinus tachycardy

Ve's Ampludea Twave () (101992
te (bpm) (0.01659) -

AVRs Ampitude of Twawe (o) (0 01613

V1's Number of intinsic deflections (0.01286) -

V3's Average width of Rwave (msec) (0.01243)-

Average duration between onset of Q and offset of T waves (msec) (0.0118) -
V3's Average widih of S wave (msec) (0.0113)-

V2's Amplitude of R wave (mV) (0.01063)-

's Amplitude T wave (mV) (0.01023)-

V35 Area undor GRST complox (msec? 0.01001)-

33 Number of i dfiectons (0 09)-

V3's Amplitude of R wave (mV) (0.00846) -

vas Ampllludsnl v (V300001

0 QRS duration (msec) (0.00791) -

Vs Ay unnel QRS complex (msec) -

e of Rwave (mV) (0.

Averago dration batween o consccotie Twaves (msoe
AVF's Average width of Q iave (msec)

V3's Amplitude of Qwave (V)

°

Feature (Mean Shapley Value)

0.00449) -

old anterior myocardial
infarction

>

ventricular premature
ntract

old inferior myocardial left bundle branch block right bundle branch block left ventricule hypertrophy atrial fibrillation
inf

° °
o

capo

supfavenlncuar premature
traction

Shapley Value (impact on model output)

Figure 4: SHAP Summary Plot for NB Classifier for Iteration 1.

Concentrating on the 14 most frequently appearing features in
the final feature subsets across the 10 iterations, heart rate (bpm)
increased the prediction probability of ‘other’ class in NB model, ‘si-
nus tachycardy’ (ST) and ‘sinus bradycardy’ (SB) in kNN model, and
‘normal’ and ‘coronary artery disease’ (CAD) in RF model, while
decreasing the prediction probability for CAD in NB and kNN mod-
els, and additionally ‘normal’, ‘ventricular premature contraction’
(VPC), and ‘other’ in kNN model, and often affecting ‘normal” and
‘atrial fibrillation’ (AFib) in NB model, ST and SB in NB and RF
models, and OIMI in all NB, kNN, and RF models. Average QRS
duration (msec) often increased prediction of ‘left bundle branch
block’ (LBBB), ‘right bundle branch block’ (RBBB), and ‘other’ in
NB, VPC in kNN, and ST in RF, while decreasing the prediction
probability of ‘normal’ in NB, and often influencing prediction of
‘normal’ in kNN and RF, and CAD, LBBB, RBBB, and ‘other’ in RF.
Lead V1’s area under QRS complex (msec-mV) increased prediction
probability for ST in NB, RBBB in NB and kNN, and LBBB and
‘other’ in NB and RF. It often decreased prediction for ‘normal’ in
NB, and ‘other’ in kNN while affecting predictions for AFib in NB,
‘normal’, SB, and RBBB in RF, and CAD in both NB and RF. The
average duration between onset of Q and offset of T waves (msec)
often increased probability for SB and VPC in NB, and ST in both
NB and kNN, decreased prediction for ‘other’ in NB, SB in kNN, and
‘normal’ in both NB and RF, while influencing the predictions of
CAD, LBBB, and AFib in NB, ‘normal’ in kNN, ST and SB in RF. The
average duration between two consecutive T waves (msec) often

29

increased the prediction probability of CAD and decreased predic-
tion probability of ‘normal’ in NB and RF while often affecting the
prediction probability of ‘other’ in kKNN.

Lead AVF’s average width of Q wave (msec) increased the pre-
diction probability of OIMI in all models, decreased the prediction
probability for ‘other’ in kNN and ‘normal’ in both NB and RF,
and often influenced the predictions of ‘normal’ and VPC in kNN.
V3’s average width of S wave (msec) often increased prediction
probability of OAMI in RF and affected prediction for ‘normal’ in
NB. V6’s amplitude of T wave (mV) often increased the prediction
probability of ‘normal’ and OIMI in RF and affected the probability
of CAD in all these models, ‘normal’ and SB in NB, and ‘normal’,
VPC, RBBB, and ‘other’ in kNN. Lead V3’s amplitude of R wave
(mV) increased the prediction probability of OAMI in NB and RF,
decreased ‘other’ in NB and ‘normal’ in kNN, and affected the prob-
ability of ‘other’ and ‘normal’ in RF. V4’s amplitude of T wave (mV)
often increased the prediction probability of ‘normal’ and CAD in
NB, CAD, VPC, and RBBB in kNN, decreased the probability of
RBBB in RF while affecting the probability of ‘normal’ and ‘other’
in kNN and RF and additionally CAD in RF. AVR’s amplitude of T
wave (mV) increased the probability of ‘normal’ and CAD in NB
and CAD, VPC, and RBBB in kNN, decreased the probability of
AFib in NB, while affecting CAD in NB, VPC and ‘other’ in kNN
and ‘normal’, CAD, and ‘other’ in RF. V3’s amplitude of Q wave
(mV) increased the probability of CAD in NB and OAMI in RF while
decreasing the probability of ‘normal’ in both NB and RF.

Lead V3’s number of intrinsic deflections increased the predic-
tion of OAMI in all models, CAD in both NB and RF, SB in kNN and

CASCON’20, Nov 10-13, 2020, Toronto, Canada

decreased the probability of SB in NB, ‘normal’ in kNN, AFib in RF
while affecting ‘normal’ and ‘other’ in NB and RF, and RBBB in RF.
V1’s number of intrinsic deflections increased the probability of
‘normal’ in NB while decreasing the probability of RBBB in RF and
often influencing the probability of OAMI and SB in NB, ‘normal’
in kNN and RF, AFib and ‘other’ in NB and RF.

For Ensemble, base NB’s predictions often increased the predic-
tion probability of CAD, decreased the probability of RBBB, and
influenced the probability for ‘normal’. Base kNN’s predictions
often increased the prediction probability for ‘normal’, CAD, and
OAM], decreasing the prediction for ST, SB, and ‘other’. Base RF’s
predictions increased the prediction probability of ‘normal’ and
OAMI similar to base kNN model, CAD similar to the base NB and
kNN models, while decreasing the probability of RBBB similar to
base NB model and AFib, and affecting the probability of OIMI, ST,
SB, and ‘other’. Overall, SHAP value explanations for the classifiers’
predictions highlighted that different classification algorithms used
different features from the feature subset to make predictions for
the arrhythmia class. The SHAP values showed more significant
contributions of features in NB, then kNN while RF had lower SHAP
values. However, RF often affected many of the arrhythmia class
predictions compared to NB and kNN.

SHAP Dependence Plot displays all data instances’ feature values
and its SHAP values for a feature. For example, for V6’s amplitude
of T wave (mV) in the NB model, there were nonlinear relationships
between the SHAP values and feature values. Values between -1.5
to -3.1mV decreased the prediction probability for ‘normal’ class
while values higher than 1.5mV increased its probability. Values less
than OmV increased the prediction probability for CAD; whereas,
values greater than 0mV decreased its probability. 0 to 1.5mV val-
ues increased the prediction of ST and fluctuations were seen for
‘other’. Interestingly, heart rate (bpm) only ranged from 0 to 65bpm
in the Arrhythmia dataset, indicating it as erroneous because the
normal heart rate is around 60bpm. However, the models appeared
to have found patterns within this feature to predict ‘normal” and
different arrhythmias. For example, for NB, values less than 30bpm
decreased the prediction probability of ‘normal’. 0 to 17bpm some-
times increased prediction probability for ST, indicating some of
these values could have been heart rates higher than 65bpm but pos-
sible constraints could have inhibited the recordings of these higher
values. 15 to 25bpm increased the prediction probability of SB. Simi-
lar patterns were found for the RF model. For kNN, less than 30bpm
showed decreased prediction probability of ‘normal’. Values less
than 17bpm increased prediction of ST and 17 to 30bpm increased
prediction of SB. The same patterns were found for the same models
and features across 10 iterations, depicting SHAP found consistent
patterns in the models’ predictions. Features could contain errors
in the Arrhythmia dataset, as seen with heart rate (bpm), and could
be determined with domain knowledge; however, finding better
quality data subsets within this dataset could also reduce the effects
of erroneous data present in a dataset.

SHAP Summary Plots show the distribution of SHAP values for
the features and feature values for each model and class. For exam-
ple, looking at Figure 4 for the first iteration of NB model, lower
V6’s amplitude of T wave (mV) values, lower heart rate (bpm) val-
ues, higher V1’s number of intrinsic deflections values, and slightly
higher V2’s amplitude of R’ wave values decreased the prediction

30

S. Krishnakumar and T. Abdou

probability for ‘normal’ class. Lower V6’s amplitude of T wave (mV)
also increased prediction probability of CAD with around 0.2 SHAP
value. Lower values of V3’s average width of R wave (msec) and
V3’s amplitude of Q wave (mV) increased prediction probability of
OAMI with around 0.2 SHAP value. Lower heart rate (bpm) values
increased prediction for ST and SB with SHAP values around 0.2
and 0.4, respectively. The lower average duration between onset
Q and offset T waves (msec) increased prediction for ST. Higher
average QRS duration (msec) values, lower V1’s area under QRS
complex (msec-mV), and lower V4’s amplitude of R wave (mV) val-
ues increase prediction probability for LBBB with about 0.1 SHAP
values. Higher V1’s number of intrinsic deflections, V2’s amplitude
of R’ wave (mV) values, and slightly higher V1’s area under QRS
complex (msec-mV) increase probability prediction for RBBB with
> 0.2 SHAP values. Lower values for V3’s average width of S wave
(msec) and lower V3’s number of intrinsic deflections values in-
creased prediction of other with about 0.2 SHAP value while lower
values of V3’s amplitude of Q wave (mV) decreased the prediction
probability for other with around 0.2 SHAP value.

4.4 Evaluation of Improved Classification
Models Using ‘Bellwether’ Training
Instances

In terms of accuracy, RF+BW had the highest accuracy of 91.09%,
followed by Ensemble+BW with 86.44%, NB+BW with 78.30%, RF
with 75.97%, Ensemble with 72.87%, NB with 67.83%, kNN+BW
with 62.79% and lastly, kNN with 52.72% as seen in Figure 5. As
summarized in Table 3, using the ‘bellwether’ (BW) training set for
the classification algorithms resulted in at least 10% improvement
in accuracy for the models. RF+BW again had the highest AUC
of 0.9415, second Ensemble+BW with 0.9065, closely followed by
kNN+BW with 0.9041, NB+BW with 0.8644, NB with 0.7957, RF with
0.7895, Ensemble with 0.7869 and kNN with 0.7594. Interestingly, it
was observed that training the models with ‘bellwether’ instances
improved the AUCs of these models and found RF+BW performed
well again in terms of AUC while Ensemble+BW and kNN+BW
showed good AUCs above 0.90 as well, making kKNN+BW appear
stronger than NB+BW even though NB had a higher AUC than
kNN and the kNN algorithm performed worst in terms of accuracy.

RF+BW and Ensemble+BW had the best macro specificity with
0.9898 and 0.9854, respectively. Macro F1 scores again indicated
RF+BW performed the best with an F1 score of 0.9160 and then
Ensemble with 0.8592 while RF, NB+BW, Ensemble, kNN+BW, NB,
and kNN had 0.7614, 0.7561, 0.7336, 0.7102, 0.6804, and 0.5846 macro
F1 socres, respectively. Looking at the macro precision and macro
recall, all kNN, NB, RF, and Ensemble have low performances of less
than 0.65. However, using ‘bellwether’ instances helped improve
the classification algorithms’ performances: RFE+BW had 0.8962
precision and 0.9414 recall, Ensemble+BW had 0.8539 precision and
0.8949 recall, NB+BW had 0.7493 precision and 0.8039 recall, and
kNN+BW had 0.5883 precision and 0.8862 recall.

Therefore, RF+BW was the top-performing model, followed by
Ensemble+BW in arrhythmia prediction in terms of accuracy, AUC,
macro specificity, precision, recall, and F1 score. Figure 6 shows the
efficiencies of training these models. The fastest model was kNN
classification algorithm that had training time under 5 seconds but

Towards Interpretable and Maintainable Supervised Learning Using Shapley Values in Arrhythmia

CASCON’20, Nov 10-13, 2020, Toronto, Canada

Table 3: Evaluation Metrics for the Classification Models Using the Original and ‘Bellwether’ (BW) Training Sets.

Models Accuracy AUC Macro Specificity Macro Precision Macro Recall Macro F1 score

NB 0.6783 0.7957 0.9630 0.5632 0.4930 0.6804

kNN 0.5272 0.7594 0.9575 0.4085 0.4922 0.5846

RF 0.7597 0.7895 0.9698 0.6425 0.5450 0.7614

Ensemble 0.7287 0.7869 0.9673 0.5749 0.5477 0.7336

NB+BW 0.7830 0.8644 0.9755 0.7493 0.8039 0.7561

kNN+BW 0.6279 0.9041 0.9692 0.5883 0.8862 0.7102

RF+BW 0.9109 0.9415 0.9898 0.8962 0.9414 0.9160

Ensemble+BW 0.8644 0.9065 0.9854 0.8539 0.8949 0.8592
100% o1.00% The Cliff’s § effect sizes between the new classification models’
90% - 28.30% 86.44% accuracies were still large, like the original models as seen in Ta-
jg; 7.83% ; T287% ble 4. However, it is evident that the improved NB, kNN, RF, and
- 6% I 6279% Ensemble models trained with ‘bellwether’ instances performed
£ sow better than original NB, kNN, RF, and Ensemble models with Cliff’s
< 40% § effect size magnitudes of 0.81, 0.89, 1.00, and 1.00, respectively.
30% Therefore, finding ‘bellwether’ instances with SHAP values from
ig; the data was an effective approach in improving the performance

% and maintainability of the classification models.
& S & Q’ e‘ ‘(X J Table 4: Cliff’s § Effect Sizes and the Correlation Coefficients
«* N & © &z@“\ Between the Pairs of Classifiers using Original and ‘Bell-
<&

Figure 5: Median Accuracies for NB, kNN, RF, and Ensemble
Classification Models Over 10 Iterations.

Random Forest

50.00
45.00
40.00
35.00

€ 30.00

2
3 25.00
£ 20.00
£
15.00
10.00

Naive Bayes

0.00

k-Nearest Neighbors Ensemble

mOriginal Training Set m Bellwether Training Set

Figure 6: Median Computational Efficiencies of the Original
and Improved NB, kNN, RF, and Ensemble Classifiers.

100%
90%
80%
70%
60%
50%

Accuracy

40%
30%
20%
10%

0%

Round

—e—NB —e—KkNN RF

Figure 7: Stability of the Original and ‘Bellwether’ (BW) Clas-
sification Models

Ensemble —@=NB+BW —@=kNN+BW =—@=RF+BW =—@=Ensemble+BW

all models’ training times were under one minute. The testing times
for all the models were faster, within a couple of seconds. The most
stable classification algorithms were RF and Ensemble, followed by
NB and kNN as seen in Figure 7.

31

wether’ (BW) Training Sets.

Classifier ‘ Cliff’s § Estimate Correlation Coefficient
NB -NB+BW -0.81 -0.1430
kNN -kNN+BW -0.89 0.3215
RF -RF+BW -1.00 -0.0976
En -En+BW -1.00 0.1697
NB+BW —-kNN+BW 0.8 -0.1590
NB+BW -RF+BW -1.00 -0.1441
kNN+BW -RF+BW -1.00 0.1948
NB+BW -En+BW -0.90 0.4981
kNN+BW -En+BW -1.00 -0.0930
RF+BW -En+BW 0.91 0.6136

5 THREATS TO VALIDITY

Internal Threats: The optimization of tuning hyperparameters, such
as the maximum depth of trees in RF and Ensemble’s base and meta
RF models, were not investigated but could further improve these
models’ performances and highlight more differences among the
models. Using SMOTE to oversample minority arrhythmia classes
uses synthetic samples based on the dataset, creating potential bias
and not accounting for varying samples that exist in reality. Ex-
ternal Threats: More and current data for arrhythmia with ECG
measurements would improve and allow for better assessment of
the models, providing more generalizability. This would also pro-
vide more varying minority arrhythmia class examples to train the
classification models and improve its prediction for these classes.
Construct Threats: Other classification algorithms could also be
compared for arrhythmia prediction. Using SHAP for model inter-
pretability expects features to be not correlated with each other so
that feature interactions could be further explored. Additionally,
domain experts’ knowledge would help validate and further im-
prove feature selection techniques, classification models, and the
interpretations of these models.

CASCON’20, Nov 10-13, 2020, Toronto, Canada

6 CONCLUSION AND FUTURE WORK

In conclusion, using three different feature selection techniques,
IG, RFE-RF, and AutoSpearman, was effective in finding less than
20 features for building arrhythmia prediction models. Giivenir et
al’s VFI5 with feature weights obtained an accuracy of 68% while
NB and kNN classifiers had 50% and 53% accuracy[8]. In answer-
ing RQ1, kNN classifier also had 53% accuracy (rounding to the
nearest percent) in this study. NB classifier performed better with
about 68% accuracy while Ensemble and RF had 72.87% and 75.97%
accuracy, respectively. However, using the local model-agnostic
interpretability method, SHAP, provided insights on how the predic-
tion models predicted the arrhythmia class. To answer RQ2, NB and
kNN showed features had higher SHAP values and therefore, more
contribution for arrhythmia prediction than in RF model. However,
features in RF model affected more arrhythmia classes’ predictions
than in NB and kNN models. Ensemble model often relied on base
RF model’s predictions but base NB and kNN models were still used
to help make predictions, showing Ensemble still depended on base
NB and kNN models in making predictions. SHAP showed classi-
fiers used specific feature values for individual predictions. Domain
knowledge would help evaluate whether models’ explanations for
the predictions were useful and reasonable. Lastly answering RQ3,
it was seen that finding ‘bellwether’ instances using SHAP values
improved the classification models by over 10% in terms of accuracy,
macro precision, and macro recall. Similarly, kNN, RF, and Ensem-
ble improved by over 10% for AUC and macro F1 score while NB
improved by over 5% for these metrics. Using different evaluation
metrics helped show the improvement of using ‘bellwether’ in-
stances for prediction models (Table 3). Specifically, the magnitude
of Cliff’s § were greater than 0.80, between the original models and
their respective improved models, indicating ‘bellwether’ instances
found using SHAP values were effective in improving arrhythmia
prediction models. RF+BW, Ensemble+BW, NB+BW, and kNN+BW
showed improved accuracies of 91.09%, 86.44%, 78.30%, and 62.79%,
respectively. Additionally, RF+BW was the top-performing model,
followed by Ensemble+BW, having 0.9415 and 0.9065 AUC, 0.9898
and 0.9854 specificity, and 0.9160 and 0.8592 macro F1 scores, respec-
tively. In this study, we proposed using SHAP values as a reliable
technique for model-agnostic interpretability for machine learning
models and selecting ‘bellwether’ training instances using SHAP
values to improve prediction model performances. This could help
physicians and clinicians better understand the underlying expla-
nations of models’ predictions, allowing them to trust and further
improve these models. Future work include comparing different
classification models, like Gradient Boosting, in addition to the
models from this study for arrhythmia prediction, investigating
the effect of using feature selection on the ‘bellwether’ training set,
exploring optimization of hyperparameters in RF and Ensemble
models, and obtaining more samples and/or current datasets to
better predict arrhythmias to increase the models’ generalizability
and for further interpretability of machine learning models using
SHAP values.

REFERENCES
[1] Amritanshu Agrawal and Tim Menzies. 2018. Is "better data" better than "bet-
ter data miners"?: On the benefits of tuning SMOTE for defect prediction. In
Proceedings - International Conference on Software Engineering. 1050-1061.

32

[11

[12

[13

=
&

[15

[16

(17

oy
&

[19

[20]

[21

[22

[23

[24

[25

S. Krishnakumar and T. Abdou

Raid Alzubi, Naeem Ramzan, Hadeel Alzoubi, and Abbes Amira. 2018. A Hybrid
Feature Selection Method for Complex Diseases SNPs. IEEE Access 6 (2018),
1292-1301.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
2002. SMOTE: Synthetic minority over-sampling technique. Journal of Artificial
Intelligence Research 16 (2002), 321-357. arXiv:1106.1813

Shay Cohen, Eytan Ruppin, and Gideon Dror. 2005. Feature selection based on
the shapley value. In IJCAI International Joint Conference on Artificial Intelligence.
665-670.

Dheeru Dua and Casey Graff. 2019. UCI Machine Learning Repository. http:
//archive.ics.uci.edu/ml

Karim El Mokhtari, Ben Peachey Higdon, and Ayse Basar. 2019. Interpreting
Financial Time Series with SHAP Values. In Proceedings of the 29th Annual Inter-
national Conference on Computer Science and Software Engineering (CASCON ’19).
IBM Corp., USA, 166-172.

Max Kuhn. Contributions from Jed Wing, Steve Weston, Andre Williams, Chris
Keefer, Allan Engelhardt, Tony Cooper, Zachary Mayer, Brenton Kenkel, the
R Core Team, Michael Benesty, Reynald Lescarbeau, Andrew Ziem, Luca Scrucca,
Yuan Tang, Can Candan, and Tyler Hunt. 2019. caret: Classification and Regression
Training. R package version 6.0-84.

Halil Altay Guvenir, Burak Acar, Gulsen Demiroz, and Ayhan Cekin. 1997. Su-
pervised machine learning algorithm for arrhythmia analysis. Computers in
Cardiology (1997), 433-436.

Zena M. Hira and Duncan F. Gillies. 2015. A review of feature selection and feature
extraction methods applied on microarray data. Advances in Bioinformatics 2015
(2015), 1-13.

Jirayus Jiarpakdee, Chakkrit Tantithamthavorn, and Christoph Treude. 2018.
Autospearman: Automatically mitigating correlated software metrics for inter-
preting defect models. In Proceedings - 2018 IEEE International Conference on
Software Maintenance and Evolution, ICSME 2018. 92-103.

Rahul Krishna and Tim Menzies. 2019. Bellwethers: A Baseline Method for
Transfer Learning. IEEE Transactions on Software Engineering 45, 11 (2019),
1081-1105. arXiv:1703.06218

Patrick Kwaku Kudjo, Jinfu Chen, Solomon Mensah, Richard Amankwah, and
Christopher Kudjo. 2020. The effect of Bellwether analysis on software vulnera-
bility severity prediction models. Software Quality Journal (2020), 1-34.

Stefan Lessmann, Bart Baesens, Hsin Vonn Seow, and Lyn C. Thomas. 2015.
Benchmarking state-of-the-art classification algorithms for credit scoring: An
update of research. European Journal of Operational Research 247, 1 (2015), 124~
136.

Libo Li, Stefan Lessmann, and Bart Baesens. 2019. Evaluating Software Defect
Prediction Performance: An Updated Benchmarking Study. SSRN Electronic
Journal (2019).

Scott M. Lundberg and Su In Lee. 2017. A unified approach to interpret-
ing model predictions. In Advances in Neural Information Processing Systems,
Vol. 2017-Decem. Neural information processing systems foundation, 4766-4775.
arXiv:1705.07874

Eduardo José da S. Luz, William Robson Schwartz, Guillermo Camara-Chavez,
and David Menotti. 2016. ECG-based heartbeat classification for arrhythmia
detection: A survey. Computer Methods and Programs in Biomedicine 127 (2016),
144-164.

Guillermo Macbeth, Eugenia Razumiejczyk, and Rubén Daniel Ledesma. 2011.
Cliff’s Delta Calculator: A non-parametric effect size program for two groups of
observations. Universitas Psychologica 10, 2 (2011), 545-555.

Christoph Molnar. 2019. Interpretable Machine Learning. A Guide for Making
Black Box Models Explainable. (2019). https://christophm.github.io/interpretable-
ml-book/

Christoph Molnar, Bernd Bischl, and Giuseppe Casalicchio. 2018. iml: An R
package for Interpretable Machine Learning. JOSS 3, 26 (2018), 786.

Saman Parvaneh, Jonathan Rubin, Saeed Babaeizadeh, and Minnan Xu-Wilson.
2019. Cardiac arrhythmia detection using deep learning: A review. Journal of
Electrocardiology 57 (2019), 70-74.

Simon Perkins, Kevin Lacker, and James Theiler. 2003. Grafting: Fast, incremental
feature selection by gradient descent in function space. Journal of Machine
Learning Research 3 (2003), 1333-1356.

Payam Refaeilzadeh, Lei Tang, and Huan Liu. 2009. Cross-Validation. In Encyclo-
pedia of Database Systems (1 ed.), Ling Liu and M Tamer Ozsu (Eds.). Springer
US, 532-538.

Dee Unglaub Silverthorn, Bruce R. Johnson, William C. Ober, Claire E. Ober, and
Andrew C. Silverthorn. 2016. Human Physiology: An Integrated Approach (7 ed.).
Pearson Education, San Francisco. 838 pages.

Marco Torchiano. 2019. effsize: Efficient Effect Size Computation. R package
version 0.7.6.

Luis Torgo. 2010. Data Mining with R, learning with case studies. Chapman and
Hall/CRC.

https://arxiv.org/abs/1106.1813
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://arxiv.org/abs/1703.06218
https://arxiv.org/abs/1705.07874
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

Efficient Location-Level Risk Analytics

Neil Burke
neil.burke@dal.ca
Faculty of Computer Science
Dalhousie University
Halifax, Nova Scotia

ABSTRACT

We propose a system for performing risk analytics of reinsurance
portfolios at the resolution of individual insured locations. By using
a graph-based portfolio representation, our system achieves the
flexibility to represent arbitrarily complex reinsurance portfolios.
In spite of this flexibility, which is not achieved by current risk ana-
lytics systems, neither commercial nor academic ones, our system
is substantially faster than current risk analytics systems. Given
that such a location-level portfolio analysis involves the processing
of terabytes of data, the key to the efficiency of our system is the
use of a scalable cloud-based architecture and the careful engineer-
ing of the data representation and algorithms to ensure that data
processing happens entirely in memory of the compute nodes.

CCS CONCEPTS

« Applied computing — Enterprise applications; » Informa-
tion systems — Data analytics.

KEYWORDS

risk analytics, cloud computing, algorithm engineering

1 INTRODUCTION

Insurance companies sell insurance to property owners and thereby
expose themselves to the risk of financial losses when the insured
files a claim. Natural disasters, such as earthquakes, floods or hur-
ricanes, can expose an insurance company to catastrophic losses
that result in the company’s bankruptcy or, worse, its inability to
reimburse its clients. Reinsurance companies act as insurers for
insurance companies. Reinsurance treaties (contracts) between pri-
mary insurers as the insured and a reinsurance company as the
insurer protect the primary insurer against such catastrophic losses.
This is an industry capitalized at $500 billion per year and annual
gross written premiums of more than $260 billion.

Both insurers and reinsurers aim to structure their portfolios
of contracts and treaties so that the probability to make a profit—
when premiums exceed claim payouts—is (significantly) higher than

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CASCON’20, Nov 10-13, 2020, Toronto, Canada

© 2020 Copyright held by the owner/author(s).

Oliver Baltzer
oliver@analyzere.com
Analyze Re
Halifax, Nova Scotia

33

Norbert Zeh
nzeh@cs.dal.ca
Faculty of Computer Science
Dalhousie University
Halifax, Nova Scotia

the probability of a loss—when claim payouts exceed premiums.
This does not only ensure the profitability of the company but
also reduces the risk that a reinsurance company cannot meet its
insurance obligations toward its clients, which in turn reduces
the risk that a primary insurer cannot meet its obligations toward
its clients—property owners. The ability to model and quantify
risk due to natural catastrophes to ensure an insurer’s solvency
has gained increasing importance over the last 25 years. Prior to
the introduction of commercially available catastrophe modelling
software, insurers relied on records of infrequent historical claims
in order to extrapolate future loss potential [8, 23].

Reinsurance companies employ decision support systems to help
with the management of their portfolios. This includes deciding
whether to enter into a new treaty with a primary insurer, and on
what terms; deciding whether it is safe to invest money or keep
cash on hand to respond to seasonal fluctuations in risk exposure,
for example due to hurricanes; and many more questions. The core
problem is to compute a loss distribution, a probability distribution
over the potential payouts to clients due to natural disasters.

The portfolio of a typical reinsurance company consists of thou-
sands of reinsurance treaties that can cover several hundred million
insured properties. The numbers of treaties and insured locations
and the complex interactions between different treaties in the port-
folio make it impossible to obtain a closed-form expression describ-
ing the loss distribution. Consequently, decision support systems
used in the reinsurance industry rely on Monte Carlo simulation to
obtain an accurate estimate of this distribution [6].

The estimation of the loss distribution using Monte Carlo sim-
ulation is computationally costly and involves the processing of
dozens of terabytes of data when analyzing a typical reinsurance
portfolio based on the risk exposure of individual insured locations.
Performing such a location-level analysis on existing commercial
risk analytics platforms is either infeasible or involves a combina-
tion of manual manipulation of the data with days of computation
time (see Section 6.4). To reduce the computation cost, most com-
mercial systems support only less fine-grained analyses based on
preaggregated losses at the county or state level. This sacrifices
accuracy and makes it impossible to model, for example, (quite
common) reinsurance treaties that cover losses due to hurricane
damage to properties within a certain distance from the coast.

Thus, there is a need for risk analytics platforms that are capable
of performing a location-level risk analysis of a full reinsurance
portfolio. Ideally, such a platform should be able to produce the
loss distribution of a portfolio within minutes because this helps an
underwriter to analyze the impact of a new treaty on the portfolio’s
risk exposure while negotiating the terms of the treaty. Fine-grained
modelling of a portfolio’s risk exposure at the level of individual
locations also opens the door for detailed tailoring of reinsurance

CASCON’20, Nov 10-13, 2020, Toronto, Canada

treaties, for example by adjusting the coverage for losses incurred
due to damage to high-risk locations. To support such fine-tuning, a
location-level risk analytics platform should be flexible and support
essentially arbitrary treaty terms and interactions between treaties.

In this paper, we propose a location-level risk analytics system
that meets both requirements. It achieves the flexibility to model
arbitrarily complex reinsurance portfolios by representing a portfo-
lio as a directed acyclic graph structure built from a small number
of simple building blocks. We propose a scalable cloud-based par-
allel evaluation engine that can compute the loss distribution of
a typical reinsurance portfolio covering 70 million insured loca-
tions in around 30 minutes on 20 compute instances with 48 cores
each. This is significantly faster than the performance of current
commercial or academic risk analytics systems—many of these
systems are unable to perform less fine-grained analyses in 30
minutes. Our system achieves faster performance in spite of its
greater flexibility—existing commercial and academic risk analytics
systems can manipulate only portfolios of a restricted structure.

Given that performing a portfolio risk analysis via Monte Carlo
simulation involves evaluating a large number of independent trials
(see Section 2), it is natural to parallelize the analysis by assigning
different trials to compute nodes that evaluate these trials inde-
pendently. This is efficient if each compute node can evaluate its
assigned trials entirely in memory. Since several gigabytes of data
must be processed to evaluate a single trial, this is non-trivial. The
key technical contribution of this paper is to demonstrate that the
evaluation of the portfolio graph can be organized so that the inter-
mediate results that need to be held in memory use little space. This
amounts to finding a topological ordering of the portfolio graph
of low cut width (see Section 5). Minimizing the cut width is an
NP-hard problem. Our solution employs a heuristic that exploits
the structure of typical portfolio graphs to obtain a topological
ordering of sufficiently low cut width quickly and then modifies
the portfolio graph and its topological ordering to reduce the cut
width further without changing the structure of the treaties in the
portfolio represented by the graph.

The remainder of this paper is organized as follows: Section 2
gives a brief overview of the use of Monte Carlo simulation to obtain
an accurate estimate of a portfolio’s loss distribution. Section 3
discusses related work. Section 4 presents our graph-based portfolio
representation. Section 5 discusses our implementation of a cloud-
based risk analytics system. Section 6 discusses experimental results
that demonstrate the performance of our system and presents a
comparison against a major vendor’s commercial system. We offer
concluding remarks and a discussion of future work in Section 7.

2 PORTFOLIO RISK ANALYTICS

Monte Carlo simulation to estimate the loss distribution of a portfo-
lio is based on evaluating a large number of trials, typically 10,000
or more. Each trial computes the sequence of payouts to the rein-
surer’s clients, given a particular sequence of catastrophic events
(hurricanes, floods, etc.) in a given year. To compute a probabil-
ity distribution over the total annual payouts by the reinsurer to
its clients, it suffices to add up the total payouts in each trial and
analyze the frequency distribution of the total payouts across all
trials. More fine-grained analyses are possible that focus on the

34

Neil Burke, Oliver Baltzer, and Norbert Zeh

! Primary insurer
1 contracts

i Reinsurer contracts

Figure 1: Typical structure of a reinsurance portfolio. Trian-
gles represent embedded structures such as primary insur-
ers’ portfolios and the reinsurance treaties acting on them.

distribution of losses due to a particular type of peril or on seasonal
loss distributions. This can be achieved by aggregating only sub-
sets of loss values in each trial and again analyzing the frequency
distribution of these aggregates across all trials.

Each trial is based on a sequence of catastrophic events, obtained
by sampling from catastrophe models developed by seismologists,
meteorologists, and other scientists. Structural models developed
by engineers are used to translate each event into an estimated
amount of damage to each insured property affected by the event,
quantified as a monetary loss value. The result is one year event loss
table (YELT) per property (location) that records the sequence of
losses for this property due to the sequence of events in this trial.
Each entry in the YELT, called an occurrence, stores the loss value
and the type and simulated date of the event that caused it. We call
such a YELT recording the losses for one location a location YELT.

The input to a location-level portfolio analysis is a set of trials.
Each trial is represented as a set of location YELTS, one per insured
location. The payouts to the property owner by the primary insurer
due to the losses recorded in each location YELT are determined
by the contract between property owner and primary insurer. The
totals of these payouts by a primary insurer to its clients in response
to the events in the trial constitute the insurer’s sequence of losses.
Note that this sequence can itself be viewed as a YELT. The primary
insurer’s losses are covered by a complex network of reinsurance
treaties that determine the payouts from the reinsurer to primary
insurers. These payouts are the reinsurer’s losses, and they form
once again a YELT, the portfolio YELT for this trial. The portfolio
analysis produces one portfolio YELT per trial. The structure of a
typical reinsurance portfolio is illustrated in Figure 1.

This paper focuses on computing the portfolio YELTs for all
trials from their location YELTs based on the insurance contracts
and reinsurance treaties covering these losses. This is the compu-
tationally costly part of the analysis as it involves aggregating the
losses across hundreds of millions of insured locations, millions of
insurance contracts, thousands of reinsurance treaties, and thou-
sands of trials. This requires processing several terabytes of input
data. The statistical analysis of the portfolio YELTs to estimate
the portfolio’s loss distribution is comparatively trivial, as far as
computation cost is concerned. We also do not consider the process
of producing the input YELTs of each trial. They are provided as
the input of the analysis. Commercial risk analytics platforms also
start with YELTSs representing raw losses as input. These YELTs

Efficient Location-Level Risk Analytics

are provided by brokers who produce them based on catastrophe
models or generated by licensing the necessary models and tools
from a vendor.

3 RELATED WORK

3.1 Reinsurance Analytics

Location-level insurance analytics is a mostly unstudied topic.

Academic research on risk analytics systems has focused on
creating a distributed risk analytics engine using Hadoop [25] and
on using optimizations on specialized hardware to achieve fast,
single-node running times [7, 10]. These solutions only support
analyses at coarser granularities, with input YELTs aggregated to
county or state level, and they assume a very restrictive portfolio
structure, to simplify the implementation of efficient solutions. The
portfolio is assumed to be composed of a flat list of “programs”. Each
program is composed of a sequence of “layers” or transformations
that apply to all input losses in a user-specified order. The programs’
outputs are combined to generate the portfolio’s loss distribution.
This means that the portfolio is modelled essentially as a directed
tree, and that output from one program cannot be passed as input to
another within the same analysis. Not only does this make location-
level analysis impossible, it also limits the practical use of the system
even for coarser-grained analyses, as actual reinsurance portfolios
are rarely composed of programs with strictly delineated layers
and the interactions between treaties rarely form a tree.

There are a number of commercial risk analytics platforms on
the market that implement part of the functionality required to
solve the problem of location-level reinsurance analytics.

Catastrophe modelling software [1, 27] can compute the loss
distributions of a group of locations up to the primary insurer level,
and is therefore typically sold to primary insurers. These systems
are designed for modelling a much smaller number of locations
than what would be seen in a reinsurance portfolio. The two leading
products are built around Microsoft SQL Server as both their data
storage and computational platform, and are consequently bound
to the scalability limitations of SQL servers [34].

For analytics on reinsurance portfolios, the solutions on the
market today [2, 4, 32] are only able to consume data at an ag-
gregated geographic level (e.g., county level). The most flexible
of these systems allow the user to “nest” contracts within certain
other contracts. This allows for some flexibility in defining simple
dependent relationships between contracts, but it does not offer
the same flexibility and ease of expressing relationships between
contracts as a graph-based portfolio representation.

Dynamic Financial Analysis (DFA) products [5, 14, 26, 33] allow
for the modelling of complex cash flows and provide the greatest
level of flexibility in terms of structuring and modelling features.
However, they only consume data at very coarse levels of detail
and are typically limited to a small number of trials.

3.2 Graph Modelling Frameworks

The modelling of complex data flow problems as directed graphs,
as we do in our graph-based portfolio representation in Section 4,
and the development of distributed systems to evaluate such graph-
based data flow representations efficiently, as we do in Section 5,
has been the focus of previous work [3, 12, 13, 16, 20-22]. In these

35

CASCON’20, Nov 10-13, 2020, Toronto, Canada

systems, a graph represents a complex computation, vertices repre-
sent steps in this computation, and edges represent the flow of data
from one step to another. Due to their data dependencies, steps
connected by edges must be executed in sequence while steps not
connected by edges may be executed in parallel. These systems are
designed to schedule the steps of a processing pipeline (expressed
as a directed graph) across multiple machines while managing com-
munication between compute nodes. In spite of their effectiveness
for such problems, their focus on sophisticated scheduling and com-
munication strategies introduces overhead that is unnecessary in
the context of portfolio analysis. Since a portfolio analysis consists
of running tens of thousands of trials completely independently,
the reinsurance analytics problem is trivial to parallelize (barring
memory constraints; see Section 5).

Several works also exist on processing large graphs on a single
compute node [15, 18, 28, 30, 35, 36]. These systems are more aligned
with our reinsurance platform design, as each trial in our analysis
is processed on an independent compute node. However, all of
these single-machine graph processing systems are focused on
iterative processing, where the amount of data flowing across each
edge of the graph is relatively small (PageRank [24] is a common
benchmark in these papers). Our problem is different in that the
data flowing across edges is much larger and not uniform. This
makes memory a scarce resource. Indeed, minimizing the amount
of working memory necessary to evaluate a single trial is the core
challenge we address in Section 5.

4 REINSURANCE PORTFOLIO AS A GRAPH

As described in Section 2, the output of a portfolio analysis is a
list of portfolio YELTs, one per trial. Since trials can be evaluated
independently, the core of the problem is to compute the portfolio
YELT of a single trial from the location YELTs of the trial.

This process can be represented as a directed acyclic graph (DAG).
The DAG has one source (vertex without in-neighbours) per loca-
tion YELT. A single sink (vertex without out-neighbours) represents
the output of the computation, that is, the portfolio YELT. Internal
vertices represent terms and clauses of contracts and treaties, such
as deductibles to be subtracted from claimed losses, the percent-
age of the remaining losses covered under a treaty or a limit up
to which losses are covered. Deductibles and coverage limits may
apply to individual claims or to the total of all claims throughout
the year. These types of contract terms can be modelled using a
small number of vertex types in the graph. Treaties are constructed
by combining these vertices into subgraphs that capture which of
these transformations apply to which losses and in which order.

In general, every vertex other than the sources and the sink takes
one or more YELTs as input and produces a YELT of transformed
loss values as its output. This output YELT forms (part of) the input
of one or more other vertices.

For many transformations, the order in which occurrences are
processed is important. For example, some contractual terms apply
only to the first n occurrences. Therefore, YELTs must be in sorted
order (by date). For the input YELTs of the portfolio, this can be
guaranteed using a one-time preprocessing. To keep intermediate
YELTs sorted, each vertex reads its input YELTSs in order and writes
the transformed occurrences in order. If a vertex has multiple input

CASCON’20, Nov 10-13, 2020, Toronto, Canada

&))

Event Event

Load
file3

Event

Date Loss Date Loss Date Loss

2020-01-01 | 14 $400 2020-01-01 | 14 $500 2020-06-30 | 43 $100
Date Event | Loss Date Event | Loss
2020-01-01 | 14 $900 2020-06-30 | 43 $50

=)

Event

Date Loss
$900

$50

2020-01-01 | 14

2020-06-30 | 43

Figure 2: Processing YELT occurrences through a simple ex-
ample graph for one trial

YELTs, these YELTSs need to be merged by date before applying the
vertex’s transformation. Therefore, we refer to such a vertex as a
merge vertex. If a merge vertex finds multiple occurrences for the
same event and with the same date in its input YELTSs, it combines
them into a single occurrence whose loss value is the sum of the
loss values of the combined occurrences.

Figure 2 illustrates a simple example portfolio modelled using
our graph framework. The source vertices labelled “Load” read
location YELTs from storage and send the occurrences across their
output edges. “Merge” vertices merge their input YELTs without
applying any transformations. In this example, the middle merge
vertex combines the two occurrences for the same date and event
(Date=2020-01-01, Event=14) and sums their losses. The “Scale”
vertex scales the loss of each occurrence in its input YELT by 50%.
This amounts to covering only 50% of the claimed losses under this
treaty. The final vertex in the graph merges everything together,
and outputs the portfolio’s final YELT.

While using a directed graph for modelling a reinsurance port-
folio is natural, it also is novel. As discussed in Section 3, previous
reinsurance risk analytics systems are constrained to rigid or tiered
portfolio structures. Many complex portfolios cannot be modelled
directly using those systems. Directed graphs allow the construc-
tion of arbitrarily complex structures from elementary vertex types.
A typical financial contract can be modelled using 5-10 vertices.

5 CLOUD-BASED SYSTEM FOR
LOCATION-LEVEL RISK ANALYTICS

A typical reinsurance portfolio covers approximately 50-100 mil-
lion locations; each location is represented by one location YELT
per trial. These locations are covered by approximately 50 million
insurance contracts, which are reinsured by thousands of reinsur-
ance treaties. This is illustrated in Figure 1. Representing such a
portfolio as a graph as in Section 4 results in a graph with hundreds

36

Neil Burke, Oliver Baltzer, and Norbert Zeh

(5) Portfolio trial losses

(4) Graph and
. +| Occurrence |
(3)' Tngls | orocessor [Ir!put lloss'es
itoj trialsitoj
(4) Graph and
(3) Trials »| Occurrence | Input losses
111020 processor trials 11 to 20
(4) Graph and
(3) Trials Occurrence Input losses
1to0 10 processor trials 1 to 10
(6) Portfolio

loss
distribution

Occurrence
processor
queue

Storage

(2) Analysis
request

(1) Graph and
input losses

Figure 3: Occurrence processing architecture overview.
Numbers reflect the order in which the steps are taken.

of millions of vertices. A location-level analysis of such a portfo-
lio based on Monte Carlo simulation involves processing several
terabytes of input and intermediate data and requires significant
computational resources.

We implemented a cloud-based solution that distributes the com-
putation across a large number of compute nodes. This provides
scalability, elasticity, and fault tolerance. Figure 3 gives an overview
of the system’s core architecture. The client (a front end through
which the user interacts with the system) uploads the portfolio
graph and input YELTSs to a distributed storage system. To initiate an
analysis, the client divides the trials into groups and submits each
group to the occurrence processor queue. This queue is responsible
for assigning each trial group to the next available occurrence pro-
cessor. Each occurrence processor runs on its own compute node,
independently of other occurrence processors. Occurrence proces-
sors read their input from and write their results to distributed
storage, from where they can be retrieved by the client.

While this system design allows us to perform a portfolio analysis
by evaluating individual trials independently on different occur-
rence processors, with zero communication between them, process-
ing a single trial through a portfolio graph of hundreds of millions
of vertices and edges can require more memory than is available on
a commodity compute node if done naively. Occurrence processors
process the vertices of the portfolio graph in an order that ensures
that only few intermediate YELTs need to be held in memory at any
point during the analysis. This allows us to process multiple trials
in parallel so that CPU utilization is maximized, while doing all
computation entirely in-memory using commodity compute nodes.

Determining the optimal evaluation order of the vertices in the
portfolio graph is the responsibility of the graph optimizer. The

Efficient Location-Level Risk Analytics

graph optimizer is run only periodically, whenever the portfolio
changes substantially due to the addition of new insured locations
or contracts. It is an offline task that is not part of the portfolio
analysis itself. To re-optimize the graph, the client submits a request
to the graph optimizer through a graph optimizer queue. The graph
optimizer then reads the graph from distributed storage, optimizes
its vertex ordering, and writes the resulting rearranged graph back
to distributed storage, for use by future analysis runs.

The remainder of this section discusses our risk analytics system
in greater detail. Section 5.1 discusses the design of the occurrence
processor. Section 5.2 discusses the implementation of the graph
optimizer. Section 5.3 offers some final remarks concerning the
scalability, elasticity, and fault tolerance of our system design.

5.1 Occurrence Processor

The occurrence processor is responsible for computing the portfolio
YELTs of a group of trials from the location YELTs of these trials.
The occurrence processor starts one thread per trial. Typically, the
number of trials assigned to an occurrence processor is at least
the number of cores on the compute node running the occurrence
processor, thereby allowing each core to run a thread.

The occurrence processor starts by loading the portfolio graph
into memory in Compressed Sparse Row (CSR) format [29, pages 84—
85], which has a small per-edge and per-vertex memory footprint.

Since the graph representation is static, it can be shared by all
threads of the occurrence processor and concurrent accesses to the
graph by different threads do not require locking. Once the graph is
loaded, each thread begins processing a single trial, traversing the
vertices in the portfolio graph and producing the output YELT of
each visited vertex from its input YELTs based on the vertex type.
Concurrently, an asynchronous I/O thread downloads the location
YELTs of subsequent trials, with the goal of minimizing the amount
of time worker threads are stalled waiting for input data.

Since each vertex u in the portfolio graph needs access to its
input YELTs to produce its output YELT, the vertices producing
these input YELTs need to be visited before u. Thus, the vertices of
the portfolio graph need to be visited in topological order.

There are many valid topological orders. The chosen order can
have a dramatic impact on the amount of memory the occurrence
processor uses to evaluate a single trial. Consider a portfolio graph
that is a complete binary tree. The YELT produced by each vertex
u must be held in memory from the time we visit u—the time the
YELT is produced—until we visit the last vertex that has this YELT
as one of its inputs. Once this last out-neighbour of u has been
visited, the YELT can be discarded and its memory reclaimed. If
vertices are visited by decreasing distance from the sink, then the
output YELTs of all source vertices have to be held in memory
simultaneously because they are all evaluated before any of their
out-neighbours. Since half of the vertices in a complete binary tree
are source vertices, this means that half of all YELTs must be in
memory simultaneously. For a portfolio with 50-100 million loca-
tions, this requires several gigabytes of RAM per trial. In contrast,
if vertices are visited in postorder (all vertices in each subtree are
visited consecutively), only lgn YELTs need to be in memory at
any time, where n is the number of vertices in the graph. This
significantly reduces the space needed to store intermediate YELTs.

37

CASCON’20, Nov 10-13, 2020, Toronto, Canada

5.2 Graph Optimizer

Choosing a space-efficient topological ordering of the portfolio
graph is the responsibility of the graph optimizer. If the topological
ordering of the portfolio graph arranges the vertices in the order
V1,...,Un, then the YELTs that need to be in memory immediately
after processing the ith vertex v; are the ones corresponding to
edges vjur with j < i and k > i: v; has been visited and has
produced its output YELT, while v requires this YELT as part of
its input and has not been visited yet. The maximum number of
YELTs to be held in memory simultaneously is thus

max |{vjvr €E|j<i<Kk}|.
max [{vjox € B[<1<k}

We call this the cut width of the topological ordering in analogy
to the cut width of an undirected graph [17] and say that an edge
vjv with j < i < k “crosses the cut between v; and v;1.” Figure 4
illustrates that different topological orderings of the same graph
may have different cut widths. Since the cut width of the topologi-
cal ordering directly determines the maximum number of YELTs
that need to be held in memory at the same time, our strategy to
minimize the memory requirements of evaluating a single trial is
to find a topological ordering of low cut width.

Finding a vertex ordering of minimum cut width is NP-hard even
for undirected graphs [17]. Fixed-parameter algorithms [11, 31] and
a polynomial-time approximation algorithm [19] for computing
the cut width of an undirected graph have been proposed in the
literature. However, the running times of these algorithms are far
from linear. Thus, even if we were able to extend these algorithms
to DAGs, they would not be efficient enough for portfolio graphs
with hundreds of millions of vertices. Instead, we use a heuristic
approach that exploits the structure of portfolio graphs to compute
low-cut-width topological orderings for these graphs. This heuristic
is not guaranteed to find a topological ordering of the minimum
cut width, but it does find topological orderings of sufficiently low
cut width to lead to low memory requirements of the occurrence
processor, and it finds them quickly (in linear time).

The heuristic used by the graph optimizer proceeds in two phases.
The first phase computes an initial low-cut-width ordering of the
portfolio graph. The second phase modifies the graph and the order-
ing to reduce the cut width further while ensuring that the modified
graph represents the same portfolio as the original graph.

The structure of a typical location-level portfolio. In a typical rein-
surance portfolio, the insurance contracts covering individual loca-
tions do not interact with each other while the losses of primary
insurers are covered by a network of reinsurance treaties. Thus,
the portfolio graph can be viewed as a tree of subgraphs with a

(b)
Figure 4: Two topological orderings of the same graph. As

indicated by the dashed lines, the ordering in (a) has cut
width 3, while the ordering in (b) has cut width 2.

CASCON’20, Nov 10-13, 2020, Toronto, Canada

densely connected subgraph representing the network of reinsur-
ance treaties at the root and all other subgraphs representing pri-
mary insurance contracts. The subgraph representing the network
of reinsurance treaties typically consists of a few thousand vertices.
A primary insurance contract is modelled using 5-10 vertices.

Even if these subgraphs are densely connected, the portfolio
graph remains very tree-like; it has a large block close to the sink
and is otherwise composed of small blocks containing at most a few
dozen vertices. A block or 2-edge-connected component is a maximal
subgraph that cannot be disconnected by removing a single edge.

While we hope that the flexible graph-based representation of
reinsurance portfolios introduced in this paper will allow users to
model more complex and fine-tuned portfolio structures than are
in use today, we believe that the structure of reinsurance portfolios
will remain largely hierarchical, so portfolios should continue to be
composed of many fairly small blocks and very few larger blocks
close to the sink. This is the portfolio structure we exploit.

The initial topological ordering. Recall the example of a low-cut-
width ordering of a complete binary tree in Section 5.1. Given the
tree-like structure of reinsurance portfolios, this example suggests
the following simple strategy for computing a low-cut-width or-
dering of a portfolio graph: reverse the directions of all edges and
perform a depth-first traversal (DFS) of the graph starting at the
sink; arrange the vertices in postorder of the resulting DFS tree,
that is, in the order the DFS backtracks from them.

The cost of computing a topological ordering in this fashion is
linear in the size of the graph [9, Section 22.4]. If the tree of blocks
is fairly balanced and most blocks are small, both of which tend to
be true for reinsurance portfolios, then the edges crossing any cut
in the ordering are the in-edges of roughly a logarithmic number of
vertices. If these vertices have low in-degree, the topological order-
ing thus has low cut width. Some vertices, however, can have very
high in-degree. The second phase of the graph optimizer modifies
the graph to eliminate high-in-degree and high-out-degree vertices.

Degree reduction. Consider a vertex v of high out-degree ¢. Such
a vertex must create a copy of its output YELT for each of its t out-
neighbours. Instead of immediately creating ¢ copies after visiting v,
copies can be made in a tree-like manner, making few copies initially
and replicating each copy further as needed. In other words, we
introduce an “out-tree” of replicator vertices that simply make d
copies of their input YELTSs, for an appropriate parameter d used to
tune the degree reduction (see Section 6). High-in-degree vertices
can be reduced in a similar manner. A single high-degree merge
vertex can be replaced with an “in-tree” of d-way merge vertices,
for the same parameter d. Degree reduction increases the size of
the graph by adding vertices in order to reduce the cut width of the
graph. It thus trades a slight increase in the amount of computation
to be performed for the ability to perform it entirely in memory
and hence efficiently. For degree reduction to reduce the cut width
of the ordering, however, the construction of the in- and out-trees
needs to be informed by the current topological ordering.

To understand the construction of an in-tree (the construction
of an out-tree is analogous), let v; be a vertex with ¢ in-neighbours
Vjis. .. Vj,, J1 < -+ < jpr < i(see Figure 5). The in-edges of v;
cross the cut between vy, and vy, for all j; < h < i. The edges
between vj,,...,vj, and v; cross the cut between v and vp

38

Neil Burke, Oliver Baltzer, and Norbert Zeh

Cut width reduced by d — 1 = 2

1 2 3 4 5 6 1 2 3 1 2 3 4
Widths of cuts Widths of cuts

Figure 5: Cut width reduction by inserting a degree-d vertex
(square) for d = 3. Modified edges are dashed.

for all j; < h < i. Now assume we introduce a merge vertex
v’ that merges the YELTs of vj,,...,vj, and then provides the
merged YELT as one of the inputs of v;. We remove vj,,...,vj,
from the set of in-neighbours of v;, make them in-neighbours of v,
and make v’ an in-neighbour of v;. To obtain a valid topological
ordering of the resulting graph, we can insert v’ into the current
topological ordering anywhere between v;, and v;. The number
of edges crossing any cut before v’ or after v; is not changed by
this modification of the graph. The number of edges crossing any
cut between v’ and v; is reduced by d — 1: before the addition of
v’, the d edges between Vj;, ..., vj, and v; cross the cut; after the
addition of v’, a single edge between v’ and v; crosses the cut. This
immediately suggests the following strategy to ensure that v;’s
in-edges do not contribute more than d to the number of edges
crossing any cut:

We divide the sequence of in-neighbours of v; into r = [(¢t —
1)/(d — 1)] groups Vi,...,V; such that V5,...,V;, contain d — 1
vertices each and V; contains up to d vertices. We add a new merge
vertex U;l immediately after the last vertex in each group V;, with
1 < h < r. We do not add a new vertex after the last vertex in V,
but refer to v; as v;.. We link the vertices v7, ..., v;. to form a path,
by adding an edge from v, to v, , forall 1 < h < r. We attach
the in-neighbours of v; to this path by adding an edge from every
vertex in V}, to v;l, for all 1 < h < r. This results in v;’s in-tree
having the shape of a caterpillar (see Figure 6).

While this shape ensures that after degree reduction, there is no
vertex whose incident edges contribute more than d to the number
of edges crossing any cut—and it is impossible to do better with
degree-d vertices—we construct each in- and out-tree as a complete
d-ary tree instead: We divide v;’s in-neighbours into r = [t/d]
groups Vi,...,V, of size at most d, add a new merge vertex U}’l
immediately after the last vertex in each group Vj, and add edges
from the vertices in V}, to U}/l. The vertices v, ..., v} become the
new in-neighbours of v;. If r > d, we repeat this construction with
this new set of in-neighbours until v; has at most d in-neighbours
(see Figure 7). This construction provides the weaker guarantee that
the edges in v;’s in-tree contribute at most dlog; t to the number
of edges crossing any cut, but it has the following advantage:

ST T

NN N
Figure 6: Transformation of a high-degree vertex into a
caterpillar of degree d = 3. The inserted vertices are squares.

Efficient Location-Level Risk Analytics

Figure 7: Transformation of a high-degree vertex into a
balanced tree of degree d = 3. The parents of the leaves
are squares. Their parents are diamonds. Edges are directed
from left to right. For clarity, arrow tips are not drawn.

We use the cut width of the topological ordering as an approxi-
mate measure of the amount of memory needed by the occurrence
processor to process one trial. This approximation is accurate if all
YELTs have roughly the same size—in this case, it is the number of
YELTs that need to be held in memory at any time, the cut width of
the topological ordering, that determines the space requirements
of the occurrence processor. This assumption is mostly satisfied
if many occurrences are combined when a merge vertex merges
YELTs, but this may not always be the case. In the extreme case
when no occurrences are combined, the d input YELTs of v; after
degree reduction have the same total size as the ¢ input YELTs of v;
before degree reduction. Degree reduction is completely ineffective
as a means to reduce the space requirements of the occurrence
processor in this case. However, the caterpillar structure would
mean that the occurrences in half of the original input YELTs of
v; pass through at least half of the merge vertices in v;’s in-tree,
which would negatively affect the computation cost. A balanced
d-ary in-tree implements the merging process efficiently as a tree
of d-ary merges while achieving only a slightly lower reduction in
cut width. It is thus the reasonable defensive choice.

5.3 Scalability, Elasticity, and Fault Tolerance

The implementation of occurrence processors as stateless processes
without communication between them supports scalability, elas-
ticity, and fault tolerance. To improve system throughput (e.g., to
scale to a larger portfolioor more trials) and to respond to changing
system loads, it is easy to provision and deprovision occurrence
processors. Unresponsive occurrence processors can be restarted
and have their work rescheduled to a different compute node.

In theory, the scalability of our system is limited only by the
number of trials to be evaluated. An important practical limiter
is I/O. Provisioning more occurrence processors and allocating
fewer trials to each occurrence processor increases the overall I/O
bandwidth of the system and thus helps performance. However,
decreasing the number of trials per occurrence processor beyond
some point produces only minimal performance gains. There are
two reasons for this. First, the number of trials per occurrence
processor should be greater than the number of cores on a compute
node so the I/O cost of loading most input YELTs can be hidden by
loading the YELTs of later trials while evaluating ones that have
already been loaded. Since the cost of loading the YELTs of the

39

CASCON’20, Nov 10-13, 2020, Toronto, Canada

first batch of trials, one per core, cannot be hidden, a higher trials-
to-cores ratio per occurrence processor—that is, a smaller number
of occurrence processors—hides a greater fraction of the I/O cost.
Second, the portfolio graph needs to be loaded in its entirety by
each occurrence processor before the occurrence processor can start
evaluating its first trial—the cost of loading the portfolio graph
cannot be hidden. This cost is substantial because the portfolio
graphs can be large (> 10GB). Since this graph needs to be loaded
only once no matter how many trials each occurrence processor
evaluates, this I/O cost can be amortized by allocating sufficiently
many trials to each occurrence processor, but this limits scalability.

6 EVALUATION

We conducted a number of experiments to evaluate the effective-
ness of our approach to location-level portfolio analysis. Since the
feasibility of our approach depends on the ability of occurrence
processors to evaluate multiple trials in memory simultaneously,
Section 6.2 investigates the cut width of the topological ordering
of a typical portfolio graph produced using our method, including
the impact of degree reduction on the cut width and the amount of
memory and time taken by the occurrence processor to evaluate a
single trial. Section 6.3 performs a full 10,000-trial portfolio analysis
using our system and demonstrates that it can carry out such an
analysis efficiently. Section 6.4 compares the performance of our
system against a commercial system on the market today.

6.1 Test Portfolio

Since current commercial systems are unable to perform a full port-
folio analysis at the resolution of individual locations in a reasonable
amount of time, there do not exist any real-world location-level
portfolio data to date that could be used in experiments to evaluate
our system. Therefore, we are limited to using synthetic data.

We constructed our test data set from the portfolios of primary
insurers and from the portfolio of a reinsurer composed of treaties
with primary insurers and insurance contracts for high-value indi-
vidual properties.! This portfolio structure is illustrated in Figure 8.

High-value individual properties include bridges or office towers
worth hundreds of millions of dollars. Such properties are insured
directly by reinsurance companies. The contract insuring each
such property is modelled using a subgraph of approximately 50
vertices, with fairly high connectivity near the sourceand sink of
the subgraph. There are 59 such structures in our test portfolio.

Each primary insurer business unit covers 100,000 insured loca-
tions and is composed of approximately 400,000 vertices. In this
structure, the contract for each location is modelled using a sub-
graph of 4-5 vertices. The losses from contracts are combined into
the insurer’s loss YELT using a high-degree merge vertex. Our
graph models 700 different primary insurance portfolios, making
these structures the bulk of our graph.

The “reinsurer’s contractual terms” structure serves as the sink
of the graph and takes the losses from the primary insurer business
units and high-value properties as inputs. This structure contains
approximately 5,000 vertices and models interdependent reinsur-
ance contractual terms for the entire business of a real reinsurance
group. The structure includes several large merge vertices, one with

'Due to confidentiality requirements, the specific companies cannot be identified.

CASCON’20, Nov 10-13, 2020, Toronto, Canada

59 structures, approx 3000 vertices total 700 structures, approx. 307 million vertices total

I A
r RN Al

High value, High value, Primary insurer Primary insurer
individual business unit business unit
property property (100,000 locations) (100,000 locations)

individual

Reinsurer's
contractual
terms

Single structure, approx 5000 vertices

Figure 8: High-level structure of the location-level graph
used in our experiments

in-degree over 1,000 and several with in-degree over 100, making it
the most complex component of the graph in terms of connectivity.

Overall, our test graph had approximately 307M vertices and
377M edges. Its structure reflects the flow of risk from individual
insured locations via primary insurance contracts to reinsurance
treaties and thus should be representative of location-level reinsur-
ance portfolios that we expect to emerge in the real world once
systems such as ours make location-level portfolio analysis feasible.

6.2 Graph Layout, Single-Trial Memory Usage
and Processing Time

Our first experiments concern the impact of the graph layout on
memory usage and processing time. Since trials are evaluated inde-
pendently in our system, we evaluated the impact of graph layout
and degree reduction in single-trial runs on a Ubuntu 18.04 Linux
workstation with an Intel i7-6700K CPU @ 4.0GHz, 64GB of DDR4
RAM @ 2400 MT/s, and with an SSD as the storage system.

Cut width vs graph size. Figure 9 shows how the choice of the
maximum degree d during degree reduction affected the cut width
and size of the optimized graph. Values of d > 2!4 resulted in no
degree reduction and no modifications of the graph because the
input portfolio graph had no vertices of degree greater than 214,
The cut width of the topological ordering was around 10,000 in
this case. A choice of d = 2 reduced the cut width to 157 but also
added 75M vertices to the graph due the replacement of high-degree
mergers with large binary trees. The sweet spot for our test graph
was achieved for d = 16, which resulted in a cut width of 310 and
increased the size of the graph by only around 2%.

Running time of the graph optimizer. Since the graph optimizer
is run only periodically, its running time is a secondary concern as
long as it is not excessive. For all choices of d in our experiments,
the graph optimizer ran in under 4 minutes. Around 50s were spent
on reading the input graph and writing the optimized graph back to
disk. It took around 10s to compute the initial topological ordering
of the input graph. Degree reduction was the costliest step, taking
around 150s. For d > 2“4, the degree reduction cost dropped to
almost zero since the graph is not modified by the degree reduction
in this case. As a result, the running time of the graph optimizer
dropped to around 60s (I/O time + topological sorting) for d > 214.

Running time of occurrence processor. The running time of the
occurrence processor depends on the total size of all YELTs it needs

40

Neil Burke, Oliver Baltzer, and Norbert Zeh

380 —— V] (millions) | == 10000
—-== Cutwidth !
370 j
8000
360
g 350 6000 <
= e
z B
£ 340 H
s 4000 ©
330
320 2000
310
0

21 22 23 24 25 26 27 28 29 210 211 212 13 214 215
Max degree

Figure 9: Number of vertices vs cut width for different values
of the maximum degree parameter

250 —®— Max degree =2
Max degree = 16
—®- Max degree = 128
200 —» Max degree = »
0
)
(]
£ 150
=1
o
j=
=
5 100
4
50
0.01 0.1 02 03 04 05 06 07 08 09 10

Average occurrences per location

Figure 10: Running time of the occurrence processor as a
function of maximum degree and average number of occur-
rences per location

to process, which is correlated with the size of the portfolio graph
and the average size of the input YELTs. As discussed at the begin-
ning of this section, the maximum vertex degree used during degree
reduction impacts the graph size. We controlled the size of the input
YELTs using the average number of occurrences per location as
a parameter. We varied this parameter between 0.01 and 1. Since
individual properties are unlikely to make an insurance claim every
year, the average number of occurrences generated per location is
typically no greater than 0.2 in practice (which resulted in 4TB of
input YELTS for a 10,000 trial analysis for the test portfolio).
Figure 10 shows the time to process a single trial using the occur-
rence processor as a function of the average number of occurrences
per location and for different levels of degree reduction. There is a
baseline cost of about 25 seconds to load the graph into memory.
In a multi-trial portfolio analysis, this cost is amortized over multi-
ple trials evaluated by the same occurrence processor. Above this
baseline, the running time scaled linearly with the average number
of occurrences per location, which was to be expected because this
number should have a roughly linear influence on the total size of

Efficient Location-Level Risk Analytics

all YELTs in the portfolio graph. Degree reduction with d > 16 had
an insignificant impact on the running time, as the size of the graph
increases by no more than 2% for these parameters compared to
no degree reduction. The running time for d = 2 was noticeably
higher than for d > 16 due to the around 75M vertices added by
the degree reduction.

Memory usage of occurrence processor. The occurrence processor
used 112MB of memory to store the intermediate YELTs for the
original graph without degree reduction (d = oo, cut width 10,000),
31MB for the graph with maximum degree d = 128 (cut width 820),
and 15MB for the graph with maximum degree d = 16 (cut width
310). These results are significant for two reasons:

First, the reduction in cut width for smaller values of d translates
into a reduction in memory size, albeit not in a linear one: a factor
of around 30 between the cut widths for d = oo and for d = 16
translate into only a factor of 8 between the amounts of memory
used. This is because in the unreduced graph, the cuts crossed by
many edges are close to the sources of the graph, but edges close to
the sources carry only few occurrences; some of them do not carry
any occurrences. As the cut width decreases with smaller values
of d, the cuts causing peak memory usage shift closer to the sink
where YELTs carry more occurrences.

Second, processing even the unreduced graph uses only a mod-
est amount of memory, which shows that the initial topological
ordering is good enough to allow processing multiple trials in mem-
ory. This is significant because, as mentioned in Section 5.2, if few
occurrences are combined during merge steps, degree reduction
provides little benefit to memory usage.

6.3 Evaluation as a Distributed System

To evaluate the feasibility of a full-scale location-level portfolio
analysis consisting of 10,000 trials, we provisioned 20 m5.12xlarge
compute nodes from Amazon EC2 to serve as occurrence proces-
sors and submitted a 10,000 trial job using our graph reduced to a
maximum degree of 16. We used m5.12xlarge nodes for their high
network bandwidth and because the high vCPU count (48) allowed
us to reduce the number of times the graph had to be loaded into
memory. We used an average of 14 million input occurrences per
trial, an aggressively high estimate of what we would expect from
a typical location-level analysis. Each compute node was issued
500 trials to process, an average 1011 trials per vCPU. We used
Amazon’s Simple Storage System (S3) for distributed storage, as it
scales well and has high throughput for Amazon EC2 nodes located
in the same availability zone. We used Amazon’s Simple Queue
Service (SQS) for the occurrence processor queue.

Starting from a newly provisioned cluster of occurrence proces-
sors with no data preloaded onto it, the system was able to compute
the portfolio YELTs for 10,000 trials in approximately 33 minutes.
The dedicated I/O threads of the occurrence processors retrieved
all data (approximately 4TB) in approximately 28 minutes. This
cost was nearly perfectly hidden by downloading the input data
for later trials while earlier trials were being processed. Since the
rate of download exceeded the rate of occurrence processing, our
current implementation is bound by computation speed. However,
any further optimizations of the processing speed, without any I/O
optimizations, will not reduce the running time below 28 minutes.

41

CASCON’20, Nov 10-13, 2020, Toronto, Canada

6.4 Comparison Against a Commercial System

The substantial licensing fees of commercial risk analytics systems
make it infeasible to compare our system against a wide range of
them. Due to a working relationship with one of the major vendors,?
we were given access to a server running their platform.

The vendor’s analytics suite offers two separate programs: an
insurance client for modelling primary insurance structures and
a reinsurance client for modelling reinsurance structures. Using
these programs to model a reinsurer’s portfolio at location-level
requires using the insurance client to model the primary insurance
contracts in the reinsurer’s portfolio, manually exporting the re-
sulting loss distributions to the reinsurance client, and running the
reinsurance client to apply the portfolio’s reinsurance treaties to
the loss distributions generated by the insurance client.

We used this process to perform a location-level analysis on a
real primary insurer’s data set of 500,000 locations, representing
hurricane risk exposures in a US state. Each location was covered
by one primary insurance contract. As the reinsurance structure,
we created a simple synthetic contract. A full reinsurance portfolio
includes locations from many other states and countries. Thus, this
data set represents only a small slice (< 1%) of the amount of work
required for a typical location-level analysis.

We evaluated the vendor’s analytics suite on the vendor’s hard-
ware, a virtualized Windows Server 2016 machine running on a
Xeon Gold 6154 processor with 16 virtualized cores and 64GB of
memory, and another Windows Server machine running Microsoft
SQL Server 2017 with 2 virtualized cores and 16GB of memory. With
this configuration, it took the vendor’s platform approximately 38
minutes to compute the portfolio’s losses.

We ran the same experiment on our platform using comparable
compute resources: one m5.4xlarge EC2 instance with 16 cores
and 64GB of memory. We could not run on the vendor’s hardware
because the implementation of our platform is Linux-based. With
this configuration, our platform took 35 seconds to perform the
same analysis (plus an additional 11 seconds to topologically sort
the graph and reduce its maximum degree). Due to nuances in the
interpretations of some financial contracts, both systems generated
different loss distributions in some instances. However, with de-
tailed knowledge of the vendor’s interpretation of such contracts,
our system is capable of generating matching output.

In addition to being significantly faster, our system is also signif-
icantly more flexible. The vendor’s system allows only one primary
insurance contract per location. The contract itself only supports
the three most common terms. The reinsurance client allows users
to create portfolios containing multiple contracts of different types,
but they are difficult to combine to model arbitrary dependencies
between contracts. The system uses a referencing system to direct
output from one reinsurance contract to another but only some
contracts can be referenced by others and keeping track of the
overall structure becomes difficult as more references are added.

On the small data set in this comparison, our system was over 50
times faster than the vendor’s system. Therefore, while our system
can perform a full-scale location-level analysis in around 30 minutes,
we expect the vendor’s system to take more than a day. This has
a significant impact on the feasibility of location-level analyses in

2 Again, confidentiality agreements prevent us from disclosing the name of the vendor.

CASCON’20, Nov 10-13, 2020, Toronto, Canada

the reinsurance industry. Moreover, we expect that the vendor’s
system’s use of a single SQL server for processing and retrieving
data introduces a significant bottleneck that severely hampers its
scalability to the size of a full-scale location-level portfolio.

7 CONCLUSION

We presented a system for processing complex reinsurance port-
folios at location-level resolution. By employing a flexible graph
representation, our system can model arbitrary dependencies be-
tween reinsurance contracts. In contrast, many commercial systems
on the market impose significant restrictions on the type of portfo-
lio structures they can model. In spite of this greater flexibility, our
system is over 50 times faster than at least one commercial system
by a major vendor we were able to use for comparison. Moreover,
it is unclear whether current commercial systems can scale to the
size of a full-size location-level portfolio, an input our system can
process in 33 minutes using a scalable cloud-based architecture.
To support interactive use of our system, future work should
focus on reducing the time of a portfolio analysis further by sup-
porting incremental updates to the graph and caching intermediate
results. Repeated runs of portfolio analyses on the same portfolio
are necessary mostly when investigating the impact of adding new
contracts or renegotiating the structure of existing contracts on
the portfolio’s risk exposure. Caching a well-chosen subset of in-
termediate results should enable the computation of an updated
portfolio YELT after each change in a matter of seconds because
most changes are local to only a small part of the graph and only
YELTs “downstream” from these changes need to be recomputed.

ACKNOWLEDGMENTS

The research of Neil Burke and Norbert Zeh was supported by the
Natural Sciences and Engineering Research Council of Canada.

REFERENCES

[1] AIR Worldwide. 2019. Touchstone. https://www.air-worldwide.com/Software-
Solutions/Touchstone/. Accessed: 2019-10-16.

AIR Worldwide. 2019. Touchstone Re. https://www.air-worldwide.com/Software-
Solutions/Touchstone-Re/. Accessed: 2019-10-16.

Tyler Akidau, Alex Balikov, Kaya Bekiroglu, Slava Chernyak, Josh Haberman,
Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. 2013.
MillWheel: fault-tolerant stream processing at internet scale. Proceedings of the
VLDB Endowment 6, 11 (2013), 1033-1044.

Analyze Re. 2019. Write More Profitable Reinsurance. https://analyzere.com/.
Accessed: 2019-10-16.

Aon. 2019. ReMetrica. https://www.aon.com/reinsurance/analytics-(1)/remetrica.
jsp. Accessed: 2019-10-16.

Aman Kumar Bahl, Oliver Baltzer, Andrew Rau-Chaplin, and Blesson Varghese.
2012. Parallel simulations for analysing portfolios of catastrophic event risk.
In 2012 SC Companion: High Performance Computing, Networking Storage and
Analysis. IEEE, 1176-1184.

Neil Burke, Andrew Rau-Chaplin, and Blesson Varghese. 2016. Computing
probable maximum loss in catastrophe reinsurance portfolios on multi-core and
many-core architectures. Concurrency and Computation: Practice and Experience
28, 3 (2016), 836-847.

Karen M. Clark. 2002. The Use of Computer Modeling in Estimating and Managing
Future Catastrophe Losses. The Geneva Papers on Risk and Insurance. Issues and
Practice 27, 2 (2002), 181-195. http://www.jstor.org/stable/41952626

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press.

Frank Dehne, Glenn Hickey, Andrew Rau-Chaplin, and Mark Byrne. 2009. Parallel
catastrophe modelling on a cell processor. In Proceedings of the 2009 Conference
of the Center for Advanced Studies on Collaborative Research. IBM Corp., 24-31.
Archontia C Giannopoulou, Michat Pilipczuk, Jean-Florent Raymond, Dimitrios M
Thilikos, and Marcin Wrochna. 2019. Cutwidth: Obstructions and algorithmic

[2

=

[7

[

8

=

=

[10]

[11

42

[12

(13]

[14

[16

(17

[18

[19

™
=

[21

[22

(23]

S
=)

™
S

w W
)

&
=

®
J

[36

Neil Burke, Oliver Baltzer, and Norbert Zeh

aspects. Algorithmica 81, 2 (2019), 557-588.

Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed graph-parallel computation on natural graphs.
In Proceedings of the 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 12). 17-30.

Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J
Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in a Distributed
Dataflow Framework. In Proceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), Vol. 14. 599-613.

Guy Carpenter & Company. 2019. MetaRisk. http://www.guycarp.com/managing-
risk/analytics/metarisk.html. Accessed: 2019-10-16.

Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee, Min-Soo Kim,
Jinha Kim, and Hwanjo Yu. 2013. TurboGraph: A fast parallel graph engine
handling billion-scale graphs in a single PC. In Proc. of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM, 77-85.
Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. 2007.
Dryad: Distributed data-parallel programs from sequential building blocks. In
ACM SIGOPS Operating Systems Review. ACM, 59-72.

Ephraim Korach and Nir Solel. 1993. Tree-width, path-width, and cutwidth.
Discrete Applied Mathematics 43, 1 (1993), 97-101.

Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-Scale
Graph Computation on Just a PC. In Proceedings of the 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 12). 31-46.

Tom Leighton and Satish Rao. 1999. Multicommodity max-flow min-cut theorems
and their use in designing approximation algorithms. 7. ACM 46, 6 (1999), 787—
832.

Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and Joseph Hellerstein. 2010. GraphLab: A New Framework for Parallel Machine
Learning. In Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial
Intelligence. 340-349.

Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A system for large-
scale graph processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data. ACM, 135-146.

Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martin Abadi. 2013. Naiad: A timely dataflow system. In Proceedings of the
24th ACM Symposium on Operating Systems Principles. ACM, 439-455.
American Academy of Actuaries Extreme Events and Property Lines Committee.
2018. Uses of Catastrophe Model Output. https://www.actuary.org/sites/default/
files/files/publications/Catastrophe_Modeling_Monograph_07.25.2018.pdf.
Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
pagerank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

Andrew Rau-Chaplin, Blesson Varghese, Duane Wilson, Zhimin Yao, and Norbert
Zeh. 2013. QuPARA: Query-driven large-scale portfolio aggregate risk analysis
on MapReduce. In IEEE International Conference on Big Data. IEEE, 703-709.
Reynolds Porter Chamberlain. 2019. Software | RPC. https://www.
rpc.co.uk/services/rpc-consulting/software://www.rpc.co.uk/services/rpc-
consulting/software/. Accessed: 2019-10-16.

Risk Management Solutions. 2019. Additional Software Products. https://www.
rms.com/software/additional-software-products. Accessed: 2019-10-16.
Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-stream: Edge-
centric graph processing using streaming partitions. In Proceedings of the 24th
ACM Symposium on Operating Systems Principles. ACM, 472-488.

Yousef Saad. 2000. Iterative methods for sparse linear systems (second ed.).
Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph Process-
ing Framework for Shared Memory. In Proceedings of the 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. 135-146.
Dimitrios M Thilikos, Maria Serna, and Hans L Bodlaender. 2005. Cutwidth I: A
linear time fixed parameter algorithm. Journal of Algorithms 56, 1 (2005), 1-24.
TigerRisk Partners. 2019. The leading risk-to-capital advisor worldwide. https:
//tigerrisk.com/. Accessed: 2019-10-16.

Ultimate Risk Solutions. 2019. Leading Provider of Dynamic Financial Analysis
DFA Software. https://www.ultirisk.com/. Accessed: 2019-10-16.

Sitalakshmi Venkatraman, Kiran Fahd, Samuel Kaspi, and Ramanathan Venkatra-
man. 2016. SQL versus NoSQL movement with big data analytics. International
Journal of Information Technology and Computer Science 8 (2016), 59-66.

Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E Priebe, and
Alexander S Szalay. 2015. FlashGraph: Processing billion-node graphs on an array
of commodity SSDs. In 13th USENIX Conference on File and Storage Technologies
(FAST 15). 45-58.

Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large-scale
graph processing on a single machine using 2-level hierarchical partitioning. In
2015 USENIX Annual Technical Conference (USENIXATC 15). 375-386.

https://www.air-worldwide.com/Software-Solutions/Touchstone/
https://www.air-worldwide.com/Software-Solutions/Touchstone/
https://www.air-worldwide.com/Software-Solutions/Touchstone-Re/
https://www.air-worldwide.com/Software-Solutions/Touchstone-Re/
https://analyzere.com/
https://www.aon.com/reinsurance/analytics-(1)/remetrica.jsp
https://www.aon.com/reinsurance/analytics-(1)/remetrica.jsp
http://www.jstor.org/stable/41952626
http://www.guycarp.com/managing-risk/analytics/metarisk.html
http://www.guycarp.com/managing-risk/analytics/metarisk.html
https://www.actuary.org/sites/default/files/files/publications/Catastrophe_Modeling_Monograph_07.25.2018.pdf
https://www.actuary.org/sites/default/files/files/publications/Catastrophe_Modeling_Monograph_07.25.2018.pdf
https://www.rpc.co.uk/services/rpc-consulting/software://www.rpc.co.uk/services/rpc-consulting/software/
https://www.rpc.co.uk/services/rpc-consulting/software://www.rpc.co.uk/services/rpc-consulting/software/
https://www.rpc.co.uk/services/rpc-consulting/software://www.rpc.co.uk/services/rpc-consulting/software/
https://www.rms.com/software/additional-software-products
https://www.rms.com/software/additional-software-products
https://tigerrisk.com/
https://tigerrisk.com/
https://www.ultirisk.com/

Investigation of Encrypted and Obfuscated Network Traffic
Utilizing Machine Learning

Kay Boldt
University of New Brunswick
Fredericton, Canada

kay.boldt@unb.ca

ABSTRACT

This paper utilizes machine learning to investigate the classifica-
tion of encryption applied to network traffic and the underlying
activities. It is firstly motivated by the difficulty of traditional traffic
classification caused by additional encryption as ports and headers
are hidden. Secondly, the results also present the effectiveness of
currently available privacy-enhancing technologies. A new dataset
is created, containing Pure (without additional encryption), Tor,
Tor with obfuscation, VPN and VPN+Tor network traffic. Addition-
ally, there are five different activities performed during each kind
of traffic recording, namely audio streaming, browsing, P2P/SFTP
file transfers and video conferencing. The traffic is classified by
extracting features based on flows calculated by ARGUS and CI-
CFlowMeter, combining three classifiers with seven feature selec-
tion algorithms. The results for the classification of the encryption
clearly indicate the possibility of using this detection system in a
modified fashion within a practical application. For the detection
of activities inside encrypted network traffic, the results show that
the disguise is ineffective. Overall, this reveals the need to improve
the resistance of commonly used techniques for the protection of
network traffic against machine learning.

CCS CONCEPTS

« Security and privacy; - Computing methodologies — Ma-
chine learning;

KEYWORDS

VPN, Tor, machine learning

ACM Reference Format:

Kay Boldt, Kenneth B. Kent, and Rainer Herpers. 2020. Investigation of
Encrypted and Obfuscated Network Traffic Utilizing Machine Learning. In
Proceedings of 30th Annual International Conference on Computer Science and
Software Engineering (CASCON’20). IBM Corp., Riverton, NJ, USA, 10

pages.

1 INTRODUCTION

Nowadays, the use of virtual private networks (VPN) or Tor can
prevent or complicate the classification of network traffic. A VPN
creates a virtual tunnel between the client and an endpoint by uti-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CASCON’20, November 10—13, 2020, Toronto, Canada

© 2020 Copyright held by the owner/author(s).

Kenneth B. Kent
University of New Brunswick
Fredericton, Canada

ken@unb.ca

43

Rainer Herpers
University of Applied Sciences
Bonn-Rhein-Sieg
Sankt Augustin, Germany
rainer.herpers@h-brs.de

tunnel through a network of nodes to the desired destination (see
Section 2.2). Traditional approaches for network classification fail
because they rely mostly on network ports or headers of network
packets and both are hidden under encryption. Therefore, machine
learning might be a possible solution. Further, this also gives an
indication of how well the currently available privacy-enhancing
technologies work.

1.1 Objectives

In this research, different machine learning methods were investi-
gated and examined to evaluate how well the detection and clas-
sification of the additionally encrypted network traffic works, as
well as the hidden activity performed within the network traffic.
Detection means that the use of an encryption method is discovered,
while classification means that the specific encryption is recognized
(e.g., VPN). To achieve this, a new dataset was created, containing
several types of additional encryption, including VPN, Tor, Tor
with obfuscation and VPN+Tor (VPN through Tor). The activities
performed were audio streaming, browsing, P2P/SFTP file transfer
and video conferencing. A new dataset was created to have full
control of the comprising encryptions and applications, which in
turn contains less noise than naturally occurring network data.

To classify the network traffic with machine learning, statistical
information/features about the recorded network flows were cal-
culated, utilizing ARGUS [2] and CICFlowMeter [3]. For machine
learning, selected methods from the machine learning framework
Scikit-learn [21] were tested using preliminary network data. Based
on those results the most suitable candidates for the analysis of net-
work traffic, with and without additional encryption, were further
utilized. To classify the network traffic, several steps were neces-
sary. The first step was the calculation of the statistical features
based on flows. Secondly, several feature selection algorithms were
utilized to create different sets of features. Finally, several classifiers
were used with each of those sets to classify the used encryption
and, based on the result, the activity performed within the network
traffic.

In addition to the comparison of the two tools for feature cal-
culation and the different machine learning algorithms, another
goal was determining whether the detection of the encryption and
the activities within can be done in practice, as this would pose a
significant threat towards privacy. Overall, this assesses the effec-
tiveness of the investigated privacy-enhancing techniques and can
be used to discern which techniques may need improvement.

CASCON’20, November 10-13, 2020, Toronto, Canada

1.2 Paper Organization

This paper is organized as follows. Section 2 covers the background
knowledge and reviews the related work. Section 3 describes the
planning of the dataset created within this research as well as the
extraction of features from network traffic and preparations to uti-
lize it for machine learning. Further, it includes planning for feature
selection and classification methods as well as the evaluation. Sec-
tion 4 is about the implementation and contains the setup for the
dataset, the tools for feature creation and the algorithms for feature
selection and classification. Section 5 comprises an analysis of the
feature selection and classification results. Section 6 presents the
conclusion and Section 7 is about future work.

2 BACKGROUND

Network traffic is usually encrypted or obfuscated using a commer-
cial VPN and/or Tor, which are explained in the following sections.
In addition, machine learning, which was used to analyze network
traffic in this research, is also introduced.

2.1 VPN

When using a VPN (virtual private network tunnel) [17], the net-
work traffic of a client is encrypted locally and forwarded to a
VPN server. This server decrypts the data and forwards it to the
original destination such as internal systems of a company or a
website. The services used or performed activities are protected by
the encryption of the VPN.

2.2 Tor

Tor [12] is an anonymization network consisting of several thou-
sand nodes or relays operated by volunteers around the world
using onion routing [14]. The applied layered encryption is the
reason for the name onion routing. A user who wants to use this
network will be connected to three randomly selected nodes [12].
With each of these three nodes, the user negotiates its own encryp-
tion/decryption key. The data to be transmitted is then encrypted
three times on the user’s system with the individual keys of the
nodes and then transmitted to the first node. This removes the
outermost encryption and forwards the traffic to the second node,
which decrypts the second level. At the last node, the final encryp-
tion level is removed and the network traffic is forwarded to its
actual destination, which only sees the IP address of the last node
and therefore not the one of the actual user.

Additionally, Tor also supports so-called “pluggable transports”
[8], which is a wrapper around the regular Tor traffic and is designed
to circumvent censorship and obfuscate network traffic. Currently
(version 9.0.1), the Tor browser supports meek-azure and obfs4.

Unfortunately, the bandwidth provided by Tor+meek is far too
low to successfully load modern web pages, connect to Spotify for
audio streaming, or start a video conference using Hangout.

Obfs4, the second currently supported obfuscation protocol, [6]
is the successor of obfs3 [5] and ScrambleSuit [7]. It encrypts the
Tor traffic in a way that it looks uniformly random. The interesting
feature of obfs4 for this research is the capability to disguise flow
signatures by offering protection against some protocol fingerprint
attacks, especially based on the packet size, and optionally on the
packet timing.

44

Kay Boldt, Kenneth B. Kent, and Rainer Herpers

Obfs4 achieves this by implementing a protocol polymorphism
[6, 7], consisting of two steps. The first one manages the packet
length obfuscation. As long as enough data is in the send buffer, all
packets are as large as the maximum transmission unit (MTU). If
the send buffer no longer contains enough data, a random packet
length is chosen, and the last packet will be padded to this length,
resulting in an obfuscated packet size.

The second step is the optional obfuscation of the inter-arrival
times. As long as there is data to be sent, it will pick a random
delay and pause the transmission accordingly. This should protect
network traffic from being classified based on packet timings.

2.3 Machine Learning

Machine learning can be used to obtain information automatically
from data [22]. This allows structures, patterns and information
to be recognized in large amounts of data. Usually, this would be
very difficult or even impossible with conventional approaches [15].
This research uses algorithms that belong to the class of supervised
learning, which needs labelled data.

2.3.1 Training and Testing. Through testing and validation, the
error of the trained model in the generalization can be determined
[15]. A part of the existing data is retained during training and
used for testing. In order to not waste large amounts of data, but
still be able to achieve a trustworthy score for the model, the so-
called k-fold stratified cross-validation can be used [22]. Usually,
10 folds are used, which means that the data is split into 10 folds,
maintaining the original distribution of samples per class, using
nine folds for training and the last one for testing. The same is now
repeated until every fold has been the test fold. This gives 10 scores
on 10 different testing sets that can now be averaged in order to
get a trustworthy score of the performance of the model.

2.3.2 Evaluation. To evaluate the performance of the different al-
gorithms and feature subsets for each classification task the true
positive rate (TPR—also called recall), false positive rate (FPR), pre-
cision and F1 score were calculated per class and on average. The
calculations are as follows:

TP
e TPR or Recall [15]:

TP+ FN
FP
FP+TN
TP
TP + FP
Precision - Recall

e FPR [22]:
e Precision [15]:

F1[15]:2 ——mM8M8Mm
* [15] Precision + Recall

TP: true positives—the sample is positive as well as the classifi-
cation of it.
FN: false negatives—the sample is positive but the classification is
negative.
FP: false positives—the sample is negative but the classification is
positive.
TN: true negatives—the sample is negative as well as the classifica-
tion of it.

The TPR and FPR can be used to see how good or bad the pre-
dictions of a certain classifier are (e.g., the FPR indicates how many

Investigation of Encrypted and Obfuscated Network Traffic Utilizing Machine Learning

false alarms a classifier generates). The precision combines the TP
and FP to describe how precise the prediction of a certain classifier
is. F1 is a combination of precision and recall and will be used as a
value to rank the performance of all classifiers.

2.3.3 Decision Tree. A decision tree consists of nodes with learned
conditions based on the training data. New samples are checked
against the condition of the root node and will travel all the way
down to a leaf node where it is finally classified. A tree has the
advantage that it can be visualized, which helps to get an insight into
the classification progress and the importance of certain features
[22].

2.3.4 Random Forest. A random forest is a combination of multiple
decision trees. To build those trees, the training data is split into
random subsets, where each subset is used to create a single tree.
One difference with a decision tree is that not all features are used
in a specific tree. Instead, a random subset is used. The classification
starts the same way as with a normal decision tree. However, in
the end, a majority vote of all trees of the forest will determine the
class of a new sample [22].

2.3.5 K-Nearest Neighbours. K-nearest neighbours (KNN) is a sim-
ple algorithm, which is based on similarity [18]. It stores the training
data and uses this to classify new elements by choosing the closest
k elements, which are used for a majority vote to determine the
class [22]. To measure how close/far two objects are, the Euclidean
distance can be used [18].

2.4 Related Work

A few groups have previously conducted research in VPN or Tor
traffic detection [11, 13, 16, 23] by using different machine learning
techniques.

Draper-Gil et al. [13] focused on time-related features in order to
distinguish between VPN and non-VPN traffic. For this, they created
flows of regular encrypted network traffic from different classes, like
browsing, email, streaming, file transfer, VoIP and P2P. Moreover,
they did the same for VPN traffic. The flows were created by the
ISCXFlowMeter using different flow timeout values (15, 30, 60 and
120 seconds). The machine learning part was performed with Weka
using C4.5 and KNN. Overall, the C4.5 algorithm achieved better
results and some traffic types like VoIP had a good classification
rate while Chat is hard to classify. As the recognition of VPN is
a binary decision in this work, the results have to be interpreted
carefully.

Lashkari et al. [16] also focused on time-based features, but this
time they tried to distinguish between Tor and non-Tor traffic.
For the generation of the network traffic for the different classes
(browsing, VoIP, P2P, etc.) they captured the traffic without any
additional encryption at a virtual machine. This traffic was subse-
quently routed through a gateway in order to send it through Tor.
At the gateway, the traffic was captured a second time, but now
with the additional Tor encryption. This capture approach ensures
that exactly the same network data is used for the encryption as
captured before this step. However, one problem is that, especially
in the case of time-based features, the timing of the packets is heav-
ily affected by the slower Tor network. In a real-world scenario
a user who does not use Tor will have different timings than in

45

CASCON’20, November 10-13, 2020, Toronto, Canada

this case. From the captured data they extracted flows using the
ISCXFlowMeter with different flow timeout values. The resulting
dataset is unbalanced (e.g., 969 Tor flows and 38,285 non-Tor flows).
Based on this they created two different scenarios. In the first one
they used their data from this paper and merged it with the former
paper [13] and labelled it as non-Tor. The resulting classifier should
tell if a given sample belongs to Tor or not. In the second case, they
only used the data generated for this paper where they tried to
classify the used application in Tor traffic. For the classification
itself, they used Weka with the algorithms Zero R, C4.5 and KNN
for the first scenario and Random Forest, C4.5 and KNN for the
second scenario. Overall they achieved a precision of 99% for the
differentiation between Tor and non-Tor traffic and 84.1% for the
classification of the Tor traffic type. Similar to their previous re-
search [13] they have some classes like chat or email, which have
a low classification rate while P2P has a good one. As with the
previous work, the recognition of Tor is a binary decision in this
case and the results have to be interpreted carefully again.

Cuzzocrea et al. [11] used different machine learning algorithms
to detect and classify applications within Tor network traffic. They
also captured Tor and non-Tor network traffic in one session like
Lashkari et al. [16] did and used the ISCXFlowMeter to generate
the flows afterwards. The compared machine learning algorithms
are J438, J48Consolidated, BayesNet, jRip, OneR and REPTree from
Weka. In the end, J48 and jRip performed best overall, but the results
for different traffic classes are strange, because they are steady. All
classes have more or less the same results (e.g., email and P2P have
a true positive rate of 99.8% and 99.6%) while all other papers have
a huge difference between those two.

Shahbar and Zincir-Heywood [23] tried the Tor traffic classifica-
tion with two different approaches. One uses the Tor circuits and
cells, the other focuses on the Tor network flows. The main differ-
ence between those two approaches is where the analyzer needs
to be. To get the information about the Tor circuits and cells, the
analyzer needs access to the Tor relay. For the Tor network flows
the data can be captured on the host, in the local network or at the
ISP level. They focused on P2P, streaming and browsing and tested
different machine learning algorithms with Weka. For circuit level
classification, random forest achieved a cross-validated accuracy
of 94.9%. For flow level classification, they managed to achieve a
cross-validated accuracy of 99.2% using a bayesian network classi-
fier. However, their dataset is unbalanced with 60% browsing, 20%
streaming and 20% BitTorrent data.

Montieri et al. [20] went a step further. They tried to distinguish
between different anonymity tools (Tor, I2P, JonDonym) and classi-
fied the traffic inside of them. To create the flows from the network
traffic, the researchers in this paper used the tool Tranalyzer2 [9].
Because the dataset is highly biased (e.g., 6,335 JonDonym samples
and 645,708 12P samples) they downsampled the set to 10% and
5% but nevertheless, their dataset is still very unbalanced. For the
classification itself, they used naive bayes, bayesian networks, C4.5
and random forest. They achieved an accuracy of about 99.99% for
the classification of the different anonymity tools and 98.03% for
the applications.

This work contributes to this research by creating a new dataset
consisting of traffic created by multiple activities recorded without
additional encryption and with VPN, Tor, Tor with obfuscation, as

CASCON’20, November 10-13, 2020, Toronto, Canada

well as the combination of VPN and Tor. Further, several different
feature selection algorithms and different machine learning clas-
sifiers are used on balanced data. Moreover, different tools for the
calculation of flow-based features are used and compared.

3 APPROACH

For the investigation of encrypted and obfuscated network traffic,
first a dataset was created that contains the corresponding samples.
Secondly, these data were prepared for machine learning algorithms,
the results of which were evaluated in Section 5.

3.1 Dataset

The dataset for this research contained network traffic generated
by several activities like audio streaming, browsing, P2P/SFTP file
transfer and video conferencing. Furthermore, all of the above-
mentioned activities were recorded several times:

e Without additional encryption (Pure)
e While a VPN was active (VPN)

e While Tor was in use (Tor)

e While Tor with obfs4 was in use (Tor+obfs4)

e While a VPN running through Tor was active (VPN+Tor)

Each activity within the traffic classes (e.g., browsing in Tor)
was performed until the recorded network data sufficed to gener-
ate at least 1,000 samples using ARGUS and CICFlowMeter (see
Section 3.1.1). The VPN traffic was generated by utilizing a com-
mercially available solution from AirVPN [1] while the Tor traffic
is recorded on a Whonix [10] gateway (Section 4.1).

3.1.1 Preparation of the Network Data. To use recorded network
data for machine learning, it needed to be prepared. For this, the tool
ARGUS [2] in version 3.0.8.2, and CICFlowMeter [3] in version 4.0
was used. They extracted and calculated statistical features based
on the network flows. A network flow consists of all the packets
with the same source/destination IP address, source/destination
port and the same protocol (UDP/TCP). Using flows has several
advantages. First, it reduces the amount of data significantly as a lot
of information like the encrypted payloads are removed. Second, the
extracted features can be calculated on all kinds of network traffic,
if Tor/VPN is running or not. Lastly, statistical information about
the network traffic ignores all randomness from the encryption.

3.2 Machine Learning

Scikit-learn [21] (version 0.21.3), a collection of different machine
learning algorithms, was used within this research.

3.2.1 Preprocessing of the Flow Data. To scale the data to appropri-
ate ranges Scikit-learn’s built-in functions were used. The necessary
conversion of any non-numerical feature or entry into a numerical
feature was coded separately. To achieve perfectly balanced classes,
the Python toolbox Imbalanced-learn [19] in version 0.5.0 was used,
which is fully compatible with the Scikit-learn framework. It offers
different methods like down- and up-sampling of classes or even a
combination of both in order to balance the dataset again.

3.2.2 Feature Selection Algorithms and Classifiers. During prelim-
inary research on this problem, a dataset containing Pure and
VPN+Tor network data had been created. For both cases, certain

46

Kay Boldt, Kenneth B. Kent, and Rainer Herpers

activities were performed during network traffic recordings. For the
calculation of flow-based features, CICFlowMeter was used with
different flow timeout values (15, 45 and 75 seconds). This means
that a flow, which is longer than e.g., 15 seconds, was split into sep-
arate flows. Feature selection was performed using the correlation
between features and classes. For classification the algorithms J48,
random forest and multi-layer perceptron were used.

These preliminary results showed that random forest performed
best by far, while correlation is not suited to select features. Utilizing
different flow-timeouts led to contradictory results.

Feature Selection. Based on the data and results of the prelimi-
nary research, several additional feature selection algorithms were
tested to choose the ones for this research. This included variance,
select from model and cross-validated recursive feature elimination.
The latter two used decision tree, random forest and extremely
randomized trees as base-classifiers. For the tests, the old data was
used to compare the results.

Model-based means to use a base-classifier like decision tree
or random forest, which by itself calculates the importance of the
given features, and uses the provided selection [22].

Recursive feature elimination is a computationally expensive ap-
proach, that uses again such a classifier, and recursively eliminates
the least important feature [22]. This also enables the observation
of the performance of the model in each step, which can be used to
select the best performing feature subset.

As a result, variance was used to remove features that are below
a certain threshold. This keeps all features that could possibly be of
use for machine learning. Further, model-based feature selection,
as well as recursive feature elimination based on decision tree,
random forest and extremely randomized trees, were used as feature
selection methods.

Classifiers. Based on the data and results of the preliminary find-
ings, further classification algorithms were tested, namely support
vector machine with a non-linear kernel, k-nearest neighbours,
naive bayes, decision tree, extremely randomized trees and bagging
with k-nearest neighbours and decision tree. Bagging utilizes multi-
ple instances of the provided base-classifier to improve the overall
performance.

As a result, the classification algorithms k-nearest neighbours,
random forest and extremely randomized trees were used in this
research.

3.2.3 Classification. The task for each classifier was first, to rec-
ognize what kind of additional encryption was used. Secondly, the
classifier needed to detect the activity performed, while the network
traffic was recorded.

For the first case, ARGUS and CICFlowMeter calculated the sta-
tistical features based on the recorded network data containing all
traffic labelled as Pure, VPN, Tor, Tor+obfs4, Tor+meek or VPN+Tor.
Next, each feature selection algorithm created their representative
feature set on the provided data. Afterwards, all combinations of
classifiers and feature sets were trained and tested using stratified
10-fold cross-validation. To evaluate the results, the scores men-
tioned in Section 2.3.2 were calculated as well as the confusion
matrices.

Investigation of Encrypted and Obfuscated Network Traffic Utilizing Machine Learning

The second case was approached in a similar fashion as the
recorded network data now was split to only contain activities
performed during one type of additional encryption (e.g., VPN).
This data was labelled as, e.g., “browsing - VPN”. ARGUS and CI-
CFlowMeter calculated their statistical information as before and all
feature selection algorithms calculated their representative feature
sets. Finally, all classifiers were trained and tested with all feature
sets as before. This was now repeated until the activities performed
during each type of encryption were classified.

Since the choice of algorithms for feature selection and classifica-
tion was performed on a different dataset than the feature selection
and classification itself, no statistical correction procedure (e.g.,
Bonferroni correction) was used. Additionally, feature selection
and classification were compared on two different datasets.

4 REALIZATION

In order to create the dataset, it was necessary to set up the environ-
ment with the needed software to create and collect the network
data. Furthermore, flows were extracted from the recorded network
data, preprocessed and finally used by machine learning classifiers.

4.1 Setup for the Dataset

To generate the dataset, two virtual machines (Alice and Bob) with
Ubuntu Desktop 18.04.03 as the operating system were used as
clients.

The setup used to generate and capture Pure data consisted of
two virtual machines in different networks. For VPN and VPN+Tor
(illustrated in Figure 1) traffic, the provided client Eddie (based on
OpenVPN) from AirVPN [1] was used in version 2.16.3. Additionally,
the Whonix [10] gateway in version 15.0.0.6.6 was used to redirect
Tor and Tor+obfs4 traffic from the client into the Tor network, as
shown in Figure 2. This gateway is a ready-to-use virtual machine,
which acts as a gateway for the client Alice. It is built to send all data
into the Tor network and can be further modified to use obfuscation
like obfs4 and meek. The software Wireshark in version 2.6.10 was
used to record the network data and stored it in pcap files for later
use. The recording took place on the client Alice for the cases Pure,
VPN and VPN+Tor. For the Tor and Tor+obfuscation cases, the
recording took place on the Whonix gateway. For the virtualization,
the software Virtual Box in version 6.0.14 was used.

For audio streaming, the software Spotify in version 1.1.10.546
was used. To generate browsing traffic, the browser Firefox in ver-
sion 71.0 was used on various websites. For P2P traffic, the software
gBittorrent in version 4.0.3 was used to download Linux images. To
generate SFTP traffic, the client software Filezilla in version 3.28.0
was used, as well as an external SFTP server. For the traffic itself,
a small number of generated, incompressible, binary files ranging
from 100 to 800 MB were down- and uploaded, while at least twice
the amount of data was downloaded. Additionally, several thou-
sand small files ranging from 6 to 250 KB were also down- and
uploaded. Lastly, for video conferencing, the Chrome browser in
version 79.0.3945.79 and Google Hangout were used. In all cases,
the clients Alice and Bob were on separate networks.

47

CASCON’20, November 10-13, 2020, Toronto, Canada

Internet Internet

&

Service

Tor/Tor+obfsd

Whonix
Gateway

Figure 2: Setup to record Tor
network data on the VM Al-
ice.

Figure 1: Setup to record
VPN+Tor network data on
the VM Alice.

4.2 Extraction of Flows

The extraction of statistical information about flows was the first
step to prepare the network data for machine learning. The follow-
ing sections describe this process utilizing the software ARGUS and
CICFlowMeter.

4.2.1 ARGUS. The pcap files containing the recorded network
data, captured by Wireshark, needed to be read by ARGUS to ex-
tract flows. First, the pcap files were converted into an ARGUS-
specific format with the command argus -r packet.pcap -w
packet.argus. The second step was to use the created file and
extract the flows with their statistical information using the ARGUS
module “ra” with the command ra -F rarc.print.modified.conf
-nn -r file.argus. All project-specific fields like IPs, Ports and
IDs were excluded with one exception. The source net was kept
in order to filter IPv6 samples later, as all IPv6 related flows were
from local communication and had nothing to do with the research.
“-nn” was used to prevent ra from converting protocols to their
names (e.g., 6 to TCP). The output of ra was stored in a CSV file.
Continuous flows were split into five-second slices.

In the first post-processing step, all IPv6 samples were removed.
After the removal, the column “source net” was dropped, as the
addresses are project-specific.

The second step was to convert the TCP options field into a usable
format for machine learning. Initially, the options were stored in a
12-character long string with a specific character representing the
presence of a specific TCP option. As everything else was numeric,
this string was converted to binary columns, one for each possible
TCP option. After the values of the string were transferred to the
new columns, the old column with the TCP options was dropped.

The third step was to transfer the TCP flags in a similar way.
One problem is that the field containing the TCP flags is not as
thoroughly documented as the TCP options field. But as the string
in the TCP flags field was always 10 characters long, using spaces
if a TCP flag was not present, a conversion for every character to
its own binary column was used.

Finally, the columns “sEnc” and “dEnc” were converted from
single characters to binary numeric values, empty cells were filled
with a zero and the label column was added.

4.2.2 CICFlowMeter. The second tool used for the extraction of
flows was the CICFlowMeter. The flow-timeout was configured

CASCON’20, November 10-13, 2020, Toronto, Canada

to 5,000ms to be equal to ARGUS’s flow-timeout. After the flows
were generated and stored in the CSV file, project-specific features
were removed (flow id, IPs, ports and timestamp), the data type of
the two columns “Flow Byts/s” and “Flow Pkts/s” was changed to
numeric, empty cells were filled with zeros and the label column
was filled with the filename.

4.3 Machine Learning

After the data is recorded and the CSV files with the statistical
information of the flows were generated, several merged CSV files
were created. The first file contained all flows, where the labels
were exchanged for the type of encryption used. This CSV file was
used for the task of classifying the used type of encryption.

The next five files only contained the data of one specific encryp-
tion, which were used to detect the type of performed activity, like
browsing. The following steps were using those merged CSV files.

4.3.1 Environment to run the Algorithms. For the usage of Scikit-
learn, an Ubuntu 18.04.03 server was used. In order to run it, just
Python3.6 and Pip3 (version 9.0.1) were needed to install the Scikit-
learn package with its dependencies: NumPy (version 1.17.4) and
SciPy (version 1.4.0). Additionally, the software library and data
structure pandas (version 0.24.2) was installed and used.

4.3.2 Preprocessing of the Flow Data. In order to use the data
within the CSV files for machine learning, some preprocessing
was necessary. A label encoder from Scikit-learn was used to en-
code the labels from strings to numbers. In the next step, redundant
columns were removed.

Subsequently, the classes were balanced with a random under-
sampler function provided by imbalanced-learn. It chose samples
at random from all classes, but the smallest one, until the size of
the classes were equal.

4.3.3 Feature Selection Algorithms. After the preprocessing and
the downsampling, feature selection algorithms were used to create
different feature subsets. The first algorithm was “VarianceThresh-
old” provided by Scikit-learn. It removed all features without any
variance and all subsequent feature selection algorithms used only
this filtered data.

The second feature selection algorithm, called “SelectFromModel”,
is a classifier-based algorithm, where the classifier calculates the
importance of the provided features by itself. The algorithm was
used once with a decision tree, once with a random forest and lastly
with extremely randomized trees. By default, the feature selection
algorithm will select all features whose importance is greater than
the mean importance of all the features. For random forest and ex-
tremely randomized trees, the parameter “n_estimators” was used
to specify that 100 trees were used.

The third algorithm, called recursive feature elimination (RFE)
with cross validation (RFECV) is also a classifier-based algorithm.
Again a decision tree, a random forest and extremely randomized
trees were used, with the same parameters as before. RFE recur-
sively trains the classifier with all features, evaluates the importance
of the features and removes the least important one. After this, the
training starts again. RFECV uses RFE in a cross-validation loop to
obtain the optimal number of features on its own.

48

Kay Boldt, Kenneth B. Kent, and Rainer Herpers

4.3.4 Classification Algorithms. For classification, the first algo-
rithm used was k-nearest neighbours. Scikit-learn provides an im-
plementation called “KNeighborsClassifier”. Except for the “weights”
parameter, all were set to default. For weights, the distance based
approach resulted in better results. It simply assured, that closer ele-
ments have more influence during the voting of a new element. K is
five by default and changing this value did not improve the results.
K-nearest neighbours was evaluated using stratified 10-fold cross-
validation. The function “StratifiedKFold” was used, which only
calculates lists of indices for the training and test data. Using this
function ensured that in each step of the 10-fold cross-validation,
all results can be retrieved and then used to calculate the evaluation
scores. Additionally, it was possible to fit and use a scaler (“MaxAb-
sScaler”) on the training data for each run individually. The same
fitted scaler was also used for the test data of the corresponding
run. Since the data values in this research were sometimes sparse,
the selected scaler was specially designed to handle sparse data and
keep the structure of the data. It scales each feature value by the
maximum absolute value of this feature, which will be set to 1 [4].
For all following classifiers, training and evaluation were done in
exactly the same way as for the k-nearest neighbours classifier.

The second and third classifiers used were random forest using
the function “RandomForestClassifier” and “ExtraTreesClassifier”,
which implements extremely randomized trees. The parameter
“n_estimators” was set to 100 and specified the number of trees.
Additionally, the seed value for the random state was set to a fixed
value.

5 ANALYSIS

The results of the feature selection and classification algorithms,
based on the flows provided by ARGUS and CICFlowMeter, are
analyzed in the following sections. For the classifiers, the average
F1 score was utilized as the primary indicator to rank the results
to select the best classifiers. Average means the average of the F1
scores of the classes, which resulted from the 10-fold stratified cross-
validation. The true positive rate, false positive rate and precision
(on average and per class) as well as the confusion matrix were
used as needed.

5.1 Feature Selection

The number of features selected by the variance algorithm repre-
sents the upper limit, as all non-static features were included. All
other algorithms were based on these features and selected the
most relevant ones based on their individual criterion. This led to
significant differences as, for example, the model-based approach
with a decision tree selected seven features of the Tor dataset, while
using it with random forest results in 14 selected features. But these
numbers on their own are meaningless, as the results of the differ-
ent machine learning classifiers based on those feature sets are of
interest.

All classifiers were able to achieve better performance with a
reduced feature set in comparison to the variance algorithm uti-
lizing features calculated by ARGUS. Besides, all feature selection
algorithms were able to reduce the number of features, in most
cases significantly.

Investigation of Encrypted and Obfuscated Network Traffic Utilizing Machine Learning

2 ¢ 9 8 ¢ 9 5 & 5 2 % ¥ 4 o g 9 g 8 9 %
Sl R 88858588, 8:8,8-8,0-5,8,5.8,8.3
E’lmwgggxgﬁ T2E SLSPRANSBaEINYEEGN 8800088000
20855508 @ § SHZOE QAL 8<n 8’ I JoLGalLel
L020872 3 9 5 2 8 8 ° 36° g g F © 8538 8
S s e 0848 5 I § £ a £ a%e 8
s 2 g 8
5 3 b |~

E Q
9 2
2 3
) S

Figure 3: Total frequency of features calculated by ARGUS.
The x-axis lists all used 45 features provided by ARGUS
while the y-axis displays how often a feature was chosen by
a feature selection algorithm.

X8 %522 952890 cygxE L3 8§ 9 2 5 EEE
SeXxoeasle352s 03 8@ o8n 205 5 Duaet u 8 xBuFn 850200
535355085585 88S0 o Sn 00k 5 0eS g Sy Oy >0 Fuh s 8RO RE Y
SE3285353cpcedsd 0t s o oS I T2 S e T e eS8 onsn
el T T e e e e R bty o P
i;gjiggggjijgﬁa—uigom%;;%E;%i;&ﬁéégguivggméu%“5“565
3825090 FYEUCT9E 23 U235 oOT vl ghn Zrestt gp K20
L5LSXE¥ X222 980 or = L= Qeg FoOLOT 2 w

Cogazt 2) 23 & cg JEB s O

gg & g @ A °

aQ o *

Figure 4: Total frequency of features calculated by CI-
CFlowMeter. The x-axis lists all used 51 features provided
by CICFlowMeter while the y-axis displays how often a fea-
ture was chosen by a feature selection algorithm.

The usage of the CICFlowMeter resulted in a slightly different
picture. Feature selection was most of the time still able to reduce
the number of features, but some algorithms only eliminated a few.
In addition, the performance improvement from the reduced feature
sets in comparison to the full feature set was not as significant as
with ARGUS.

The reason for this can be derived from Figure 3 and Figure 4.
Those two graphics show rankings of the features provided by AR-
GUS and CICFlowMeter based on how often a feature was selected
by a feature selection algorithm. In the case of ARGUS, there is a
leading group of seven features, where each was selected more than
30 times. For CICFlowMeter, 13 features were selected more than 30
times. Together with the fact that the graph for ARGUS is steeper,
this clearly shows that the feature selection algorithms were able
to reduce the number of features better by using those provided
by ARGUS. Overall this indicates, that the ARGUS features were
more significant than those from CICFlowMeter. Further analysis to
evaluate the performance of this leading group was not necessary,
as given the task, the best performing classifier and feature set can
always be utilized.

49

CASCON’20, November 10-13, 2020, Toronto, Canada

Classifier | Task Best F1 | Feature Sel. Algo. # of Features
Major Class | 88.62% | Model-based RF 19
Pure 89.45% | Model-based ERT 23
KNN Tor 88.94% RFECV DT 5
Tor+obfs4 91.78% | RFECV DT 9
VPN 90.3% Model-based RF 12
VPN+Tor 87.85% | Model-based RF 14
Major Class | 91.97% | RFECV ERT 13
Pure 94.61% | Model-based RF 20
RF Tor 91.84% | RFECV DT 5
Tor+obfs4 94.43% | RFECV DT 9
VPN 92.37% | RFECV DT 6
VPN+Tor 89.09% | Model-based/RFECV DT 8
Major Class 92% RFECV ERT 13
Pure 97.63% | Model-based DT 10
ERT Tor 92.28% | RFECV ERT 9
Tor+obfs4 94.55% | RFECV DT 9
VPN 9237% | RFECV DT 6
VPN+Tor | 88.97% | RFECV RF | 8

Table 1: Best F1 scores from all classifiers for all datasets
based on ARGUS flows along with the used feature selection
algorithm and the number of features. If the best F1 score
is reached multiple times, the one achieved with lesser fea-
tures is used.

5.2 Machine Learning Classifiers

To evaluate the machine learning classifiers, the best average F1
score of each classifier for each dataset are listed in Table 1 for
ARGUS and in Table 2 for CICFlowMeter along with the used
feature selection algorithm and the number of features. The marked
rows are the overall best results per task and per feature calculation
software.

Based on those results extremely randomized trees was the over-
all best classifier utilizing flows provided by ARGUS. The classifier
was able to achieve the best F1 scores in all tasks but one. Only
for the classification of the activities within VPN+Tor traffic ran-
dom forest performed slightly better. Using the flows provided by
CICFlowMeter the results were different as random forest is the
overall best classifier for all tasks.

However, when comparing the results between the two tools,
overall the classifiers were able to perform better with fewer fea-
tures when using flows provided by ARGUS. The only task where
the flows provided by CICFlowMeter resulted in a higher F1 score
was the detection of the used encryption. Therefore, a combined
approach using the flows provided by CICFlowMeter to detect the
type of encryption and the flows from ARGUS to detect the used
application afterwards is the best option.

5.2.1 Classification of the used Encryption. The best F1 score for
the classification of the used encryption based on flows provided by
ARGUS was achieved by extremely randomized trees utilizing 13
features selected by the extremely randomized tree-based recursive
feature elimination function. Table 3 shows the detailed results
based on 5,734 samples per class. It reveals that the classifier was
able to detect Pure traffic best followed by Tor+obfs4, VPN, Tor and
lastly, VPN+Tor. The most surprising result was certainly, that the
detection rate of Tor+obfs4 traffic surpasses the one of plain Tor.
As obfs4 is designed to disguise the traffic pattern, this was out of
place. As this could be simply because of the presence of VPN+Tor

CASCON’20, November 10-13, 2020, Toronto, Canada

Kay Boldt, Kenneth B. Kent, and Rainer Herpers

Classifier | Task Best F1 | Feature Sel. Algo. | # of Features Class | classified as — | Pure | Tor | Tor+obfs4 | VPN | VPN+Tor
Major Class | 88.16% Model-based RF 21 Pure 5,651 | 3 6 52 22
Pure 78.39% | RFECV DT 4 Tor 2 5,088 | 120 0 524
KNN Tor 64.12% | RFECV RF/ERT 48 Tor+obfs4 1 241 | 5,360 0 132
Tor+obfs4 68.61% RFECV RF 40 VPN 35 0 0 5284 | 415
XEE - 79.86% x"ge}‘gaseg g‘; 16 VPN+Tor 11 | 420 |78 249 | 4,976
+Tor 71.76% odel-base 11 - K . .
Major Class | 93.05% | RFECV RE o Tabl(.e 4: Confusion .matrlx for 'tl.le.best cross-validated clz'lss1-
Buie 87.63% | RFECV RF 23 fication for the major class utilizing extremely randomized
RE Tor 72.78% | RFECV RF 43 trees and the feature set created by the extremely random-
Tor+obfs4 | 76.57% | RFECV RF 40 ized tree-based recursive feature elimination function using
VEN 88.41% | RFECV DT 38 5,734 flows per class provided by ARGUS.
VPN+Tor 80.79% RFECV ERT 15
Major Class | 92.3% RFECV RF 25
Pure 87.02% RFECV RF 23
ERT Tor 71.26% | RFECV RF/ERT 43 Class TPR | FPR | Precision | F1
Tor+obfs4 74.75% | RFECV DT 42 Pure 96.84% | 1.02% | 95.95% 96.40%
VPN 86.95% | RFECV ERT 36 Tor 85.22% | 3.95% | 84.35% 84.78%
VPN+Tor 80.24% Model-based DT 11 Tor+obfs4 | 98.20% | 5.11% | 98.46% 98.33%
3 . VPN 99.46% | 0.13% | 99.47% 99.46%
’]fabl::1 2: B(;:is(t:lljll scl\(/)[res flf';)m alll classﬂ:ie}ll's }fl‘or alldd:tasets VPNTTor T 55567 1 2187 1 57007 6207
ased on owMeter flows along with the used feature [Average [93.06% | 2.48% | 93.05% [93.05% |

selection algorithm and the number of features. If the best
F1 score is reached multiple times, the one achieved with
lesser features is used.

Class TPR FPR Precision | F1

Pure 98.55% | 0.21% | 99.14% 98.85%

Tor 88.73% | 2.90% | 88.46% 88.59%

Tor+obfsd | 93.48% | 2.95% | 96.33% 94.88%

VPN 9215% | 131% | 94.61% 93.37%

VPN+Tor | 86.78% | 3.92% | 81.99% 84.32%
[Average [86.78% | 2.26% | 92.11% | 92% |

Table 3: Detailed results for the best cross-validated classi-
fication for the major class utilizing extremely randomized
trees and the feature set created by the extremely random-
ized tree-based recursive feature elimination function using
5,734 flows per class provided by ARGUS.

traffic, which consists of Tor traffic at the outer layer, another test
was conducted. This time the VPN+Tor traffic was excluded but,
nevertheless, the detection of Tor+obfs4 traffic still surpassed the
one of plain Tor. Therefore, the only remaining option is, that obfs4
has some specific characteristics, which enabled the classifier to
detect it better than plain Tor.

Despite this, the combination of multiple layers of encryption
techniques was still able to improve the resistance against detection
by machine learning proved by the fact, that the detection result of
VPN+Tor traffic was far below the detection of VPN traffic alone
and also inferior to Tor.

Table 4 shows the confusion matrix for this classifier. One inter-
esting point is that Tor traffic is mostly misclassified as VPN+Tor
and vice versa, which is most likely because the outer layer of the
network traffic in both cases was Tor. Additionally, the matrix re-
veals that the classifier easily discerns VPN traffic from the other
classes save VPN+Tor, which has shared characteristics.

The detailed results for the best classifier using the flows pro-
vided by CICFlowMeter are shown in Table 5 and are based on
150,000 samples per class. The random forest classifier was used,

50

Table 5: Detailed results for the best cross-validated classi-
fication for the major class utilizing random forest and the
feature set created by the random forest-based recursive fea-
ture elimination function using 150,000 flows per class pro-
vided by CICFlowMeter.

100.00%

0,
95.00% == Pure: ERT with 10

features

== Tor: ERT with 9 fea-
tures
Tor+obfs4: ERT with
9 features

== VPN: ERT with 6 fea-
tures

=»— VPN+Tor: RF with 8
features

Iy

90.00%

F1-Score

85.00%

80.00%

75.00%

00
! gron®
pudio o7° 13 oF

\ Al A \N
ea™® o1 ;-\\eﬂa“S‘e Goeo O

Activity classified using ARGUS flows

Figure 5: Best F1-Scores for the classification of the per-
formed activity. All flows were provided by ARGUS.

while the feature set was provided by the random forest-based
recursive feature elimination function selecting 25 features. It is
slightly different from the results of ARGUS as the recognition of
Tor+obfs4 and VPN is better to an extent, that both surpassed the
one of Pure traffic. This leads to an average F1 score over all classes,
which is superior to the one achieved with ARGUS. Besides those
two, the detection of all other classes was inferior to ARGUS.

5.2.2 Classification of Activities. The best classification of activ-
ities were all achieved by classifiers utilizing ARGUS flows. The
corresponding F1 scores are displayed in Figure 5.

The results for the best classification of activities within Pure
network traffic using the flows provided by ARGUS are based on
1,096 samples per class. Extremely randomized trees was used as a

Investigation of Encrypted and Obfuscated Network Traffic Utilizing Machine Learning

classifier, utilizing 10 features selected by the model-based approach
based on a decision tree. The results show that the classes P2P file
transfer, SFTP file transfer and video chat are the ones that can be
classified best with an F1 score above 97%. Audio streaming and
browsing are the two classes with slightly worse results, with about
90%. Those two classes were often classified as each other.

The results for the classification of activities within Tor traffic
based on ARGUS flows are based on 1,006 samples per class. The
classifier extremely randomized trees was used, utilizing nine fea-
tures selected by the extremely randomized tree-based recursive
feature elimination function. Still, the three classes P2P/SFTP file
transfer and video chat were classified best (the latter even better
than in the Pure case), while audio streaming and browsing were
worst. Overall, all classes, other than video chat, were classified
worse than before, thanks to the additional layer of encryption. This
difference is particularly noticeable for P2P file transfer where the
F1 score dropped from 98.27% to 93.9% as it often was misclassified
as audio streaming or browsing.

Configuring Tor to use obfs4 should increase the difficulty upon
the classification of activities within the network traffic. But as the
graph shows, based on 1,023 ARGUS flows per class, this was not the
case. Extremely randomized trees was again used for classification
utilizing nine features selected by the decision tree-based recursive
feature elimination function. All scores for every class improved in
comparison to the classification of plain Tor activities. P2P traffic
was recognized especially well with an F1 score of 99.17%, which is
a bad thing, as this counteracts the purpose of Tor and especially
obfs4. It clearly indicates, that the deployed techniques of obfs4 to
disguise the traffic pattern (see Section 2.2) are either not useful, or
are not used at all.

The best results for the classification of activities within VPN
traffic are based on 1,025 ARGUS samples per class. Extremely ran-
domized trees was used for classification while utilizing six features
selected by the decision tree-based recursive feature elimination
function. It shows that the classification of the classes, other than
video chat, was worse than within Pure traffic thanks to the used
VPN. However, video conferencing was classified with perfect pre-
cision. Despite this, the classes audio streaming, browsing and SFTP
file transfer had a lower F1 score as with the usage of Tor. But on
average, the classification of activities in Tor or VPN traffic was
done with a very similar success rate.

The final stage is the classification of activities within VPN+Tor
traffic, based on 1,170 ARGUS flows per class. The random forest
classifier utilized eight features selected by the decision tree-based
recursive feature elimination function. Other than browsing, which
was classified with an F1 score of 87.48%, the results were worse
than for VPN alone, Tor or Tor+obfs4. Within Tor+obfs4 traffic the
classification of browsing was similarly good with 87.84%. Over-
all, this indicated clearly, that utilizing two different encryption
techniques resulted in a better disguise of the network traffic. Nev-
ertheless, the classification rates were still too high considering
that the applied multiple layers of encryption are supposed to hide
the used activities inside.

51

CASCON’20, November 10-13, 2020, Toronto, Canada

6 CONCLUSION

Summarizing, feature selection improved the performance of the
classifiers as well as the runtime, although the recursive feature
elimination functions themselves were quite time-consuming. As
the feature selection is rarely performed, this can be ignored. RFECV
offered most of the overall best-performing feature sets, but no base
algorithm could be relied upon in all cases, which was not necessary
anyway. The framework outlined in this research can always choose
the optimal feature set.

Features of ARGUS had a higher significance as the classifiers
achieve better results with fewer features compared to the results
based on flows provided by CICFlowMeter. Using ARGUS flows
resulted in the usage of fewer features, fewer samples and better re-
sults in all activity classification tasks. Only for the detection of the
used encryption were the results of the classifiers better by a small
margin, when using flows calculated by CICFlowMeter. Contrary,
using CICFlowMeter flows resulted in the usage of significantly
more features, a vast amount of samples and the best result for the
recognition of the used encryption only.

For classification, extremely randomized trees was the overall
best performing classifier for all tasks, save one, based on ARGUS
flows. As this refers to the recognition of the application within the
traffic, the best performing classifier, along with the optimal feature
set, can always be chosen based on the results of the detected type
of encryption. For CICFlowMeter, this is not necessary. For all tasks,
random forest was the best performing classifier, and overall, it
would only make sense to use the flows of the CICFlowMeter for
the classification of the used encryption.

The impact of this research on encryption techniques like VPN or
Tor utilized to disguise the performed activity or even the usage of
the encryption altogether is huge. For example, the lowest average
FPR for the classification of the used encryption was 2.26% in this
framework. This is too high for a regular approach because when
classifying thousands of samples in a couple of hours, there would
be numerous false classifications leading to many false alarms. How-
ever, with additional information, this can be reduced significantly.
If it is known that certain network traffic is generated by a spe-
cific machine, the consecutively collected samples can be treated
differently. As it is highly unlikely that the used encryption will
change within 30 seconds, at least six samples can be used to vote
for the encryption, which significantly reduces the FPR. As this
enables the classifier trained in this thesis to precisely recognize
the encryption, the following application detection can always be
performed with the optimal classifier and feature set. This is a se-
rious issue, as especially Tor+obfs4 is designed to avoid detection
and, as a last resort, should hide the activities of a user. The first
objective is crushed and the second is weakened severely.

7 FUTURE WORK

Future work involves building a real-time detection model for the
used encryption based on the before mentioned approach by imple-
menting a majority vote. This could be based on six or more samples
that are collected and calculated during 30 seconds of network traf-
fic. If only one continuous flow is present during the 30 seconds,
ARGUS would slice it into 5-second samples, resulting in at least six
samples. If more flows are present, more samples can be obtained.

CASCON’20, November 10-13, 2020, Toronto, Canada

Additionally, a sensitivity-function, to prevent false classifications
due to switching the type of encryption (e.g., turning on/off a VPN)
would be needed. It could be implemented as a controller to adjust
when an alarm should be sent, e.g., only when all samples were
classified the same or only one is classified different etc.). Further,
the 30-seconds approach can be implemented as a sliding window
(once 30 seconds of network traffic were recorded) to continuously
monitor the network traffic for changes, while keeping the false
alarm rate very low.

As this is already a practical approach towards the detection of
the used encryption, the next step is to investigate to what degree
it is possible to discern multiple activities performed at the same
time, as this is a common scenario nowadays. Further, the possible
disturbance induced by the network traffic of updates performed
by the used operating system needs to be considered as well.

Finally, to investigate countermeasures to this machine learning-
based classification of network traffic, it is of interest to examine
whether enforcing the optional obfs4 time-based obfuscation yields
an improvement in regards to privacy. Additionally, to counteract
traffic recognition, the obfuscation performed by a VPN can be
improved by configuring the usage of padding and the utilization
of dummy traffic with various patterns. As dummy traffic generates
expenses without a direct benefit, it is quite unpopular and is usually
not an option within commercially available VPNs. Nevertheless, it
can be configured when the VPN is built on private servers, as a
company would do.

8 ACKNOWLEDGEMENTS

The authors thank Markus Ullmann for technical consultation and
Stephen MacKay for his help with editing. The authors would also
like to acknowledge the financial support of both the Natural Sci-
ences and Engineering Research Council (NSERC) as well as the
New Brunswick Innovation Foundation (NBIF) for their support of
the research.

REFERENCES

[1] [n.d.]. AirVPN. Retrieved 2019-06-05 from https://airvpn.org

[2] [n.d.]. ARGUS - Auditing Network Activity. Retrieved 2019-09-17 from https:
//qosient.com/argus

[n.d.]. CICFlowMeter. Retrieved 2019-02-20 from http://www .netflowmeter.ca/
[n.d.]. MaxAbsScaler — scikit-learn 0.22 documentation. Retrieved
2019-09-11 from https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing. MaxAbsScaler.html

[n.d.]. obfs3-protocol-spec.txt_obfs3_doc — pluggable-transports_obfsproxy
— Pluggable transport for obfuscated traffic. Retrieved 2019-11-14
from https://gitweb.torproject.org/pluggable-transports/obfsproxy . git/tree/doc/
obfs3/obfs3-protocol-spec. txt

[nd]. obfs4 obfsa-spec.txt at master Aii Yawning obfs4 Ad GitHub. Re-
trieved 2019-11-14 from https://github.com/Yawning/obfs4/blob/master/doc/
obfs4-spec. txt

[n.d.]. scramblesuit-spec.txt_doc - user_phw_scramblesuit — Philipps ScrambleSuit
repository. Retrieved 2019-11-14 from https://gitweb.torproject.org/user/phw/
scramblesuit. git/tree/doc/scramblesuit-spec. txt

[n.d.]. Tor Project: Pluggable Transports. Retrieved 2019-10-01 from https://
2019.www.torproject.org/docs/pluggable-transports.html.en

[n.d.]. Tranalyzer — About. Retrieved 2019-06-25 from https://tranalyzer.com
[n.d.]. Whonix. Retrieved 2019-12-30 from https://www.whonix.org/

A. Cuzzocrea, F. Martinelli, F. Mercaldo, and G. Vercelli. 2017. Tor traffic
analysis and detection via machine learning techniques. In 2017 IEEE Interna-
tional Conference on Big Data (Big Data). 4474-4480. https://doi.org/10.1109/
BigData.2017.8258487

Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-
generation Onion Router. In Proceedings of the 13th Conference on USENIX Security

8

=

[9]
[10
[11]

[12

52

[13

[14

[15

=
&

(17

[18

[19

[20]

[21

[22

Kay Boldt, Kenneth B. Kent, and Rainer Herpers

Symposium - Volume 13 (San Diego, CA) (SSYM’04). USENIX Association, 21-38.
http://dl.acm.org/citation.cfm?id=1251375.1251396

Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam Mamun, and
Ali A. Ghorbani. 2016. Characterization of Encrypted and VPN Traffic using Time-
related Features. In Proceedings of the 2nd International Conference on Information
Systems Security and Privacy - Volume 1: ICISSP,. INSTICC, SciTePress, 407-414.
https://doi.org/10.5220/0005740704070414

David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. 1996. Hiding
Routing information. In Information Hiding, Ross Anderson (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 137-150.

AurAllien GAlron. 2018. Praxiseinstieg Machine Learning mit Scikit-Learn und
TensorFlow: Konzepte, Tools und Techniken fAijr intelligente Systeme. O’Reilly.
Arash Habibi Lashkari, Gerard Draper Gil, Mohammad Saiful Islam Mamun,
and Ali A. Ghorbani. 2017. Characterization of Tor Traffic using Time based
Features. In Proceedings of the 3rd International Conference on Information Systems
Security and Privacy - Volume 1: ICISSP,. INSTICC, SciTePress, 253-262. https:
//doi.org/10.5220/0006105602530262

Martin Kappes. 2013. Netzwerk- und Datensicherheit: Eine praktische Einfiihrung.
Springer Fachmedien Wiesbaden.

Miroslav Kubat. 2017. An Introduction to Machine Learning, Second Edition.
Springer. https://doi.org/10.1007/978-3-319-63913-0

Guillaume Lemaitre, Fernando Nogueira, and Christos K. Aridas. 2017.
Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets
in Machine Learning. Journal of Machine Learning Research 18, 17 (2017), 1-5.
http://jmlr.org/papers/v18/16-365

A. Montieri, D. Ciuonzo, G. Aceto, and A. PescapAl. 2017. Anonymity Services
Tor, I2P, JonDonym: Classifying in the Dark. In 2017 29th International Teletraffic
Congress (ITC 29), Vol. 1. 81-89. https://doi.org/10.23919/ITC.2017.8064342

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.
S. Raschka and V. Mirjalili. 2018. Machine Learning mit Python und Scikit-Learn
und TensorFlow: Das umfassende Praxis-Handbuch fiir Data Science, Deep Learning
und Predictive Analytics. mitp.

K. Shahbar and A. N. Zincir-Heywood. 2014. Benchmarking two techniques
for Tor classification: Flow level and circuit level classification. In 2014 IEEE
Symposium on Computational Intelligence in Cyber Security (CICS). 1-8. https:
//doi.org/10.1109/CICYBS.2014.7013368

https://airvpn.org
https://qosient.com/argus
https://qosient.com/argus
http://www.netflowmeter.ca/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs3/obfs3-protocol-spec.txt
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs3/obfs3-protocol-spec.txt
https://github.com/Yawning/obfs4/blob/master/doc/obfs4-spec.txt
https://github.com/Yawning/obfs4/blob/master/doc/obfs4-spec.txt
https://gitweb.torproject.org/user/phw/scramblesuit.git/tree/doc/scramblesuit-spec.txt
https://gitweb.torproject.org/user/phw/scramblesuit.git/tree/doc/scramblesuit-spec.txt
https://2019.www.torproject.org/docs/pluggable-transports.html.en
https://2019.www.torproject.org/docs/pluggable-transports.html.en
https://tranalyzer.com
https://www.whonix.org/
https://doi.org/10.1109/BigData.2017.8258487
https://doi.org/10.1109/BigData.2017.8258487
http://dl.acm.org/citation.cfm?id=1251375.1251396
https://doi.org/10.5220/0005740704070414
https://doi.org/10.5220/0006105602530262
https://doi.org/10.5220/0006105602530262
https://doi.org/10.1007/978-3-319-63913-0
http://jmlr.org/papers/v18/16-365
https://doi.org/10.23919/ITC.2017.8064342
https://doi.org/10.1109/CICYBS.2014.7013368
https://doi.org/10.1109/CICYBS.2014.7013368

An Approach to Represent and Transform Application-Specific
Constraints for an Intrusion Detection System

Ayesha Babar, Fahim Imam, Thomas R. Dean Jose Fernandez
Queen’s University Ecole Polytechnique
Kingston, Ontario, Canada Montreal, Quebec, Canada
{ayesha.babar,fahim.imam,tom.dean}@queensu.ca jose.fernandez@polymtl.ca
ABSTRACT Conference on Computer Science and Software Engineering, Nov 10-13, 2020,

While the need for newer and more efficient network security tech- Toronto, Canada. IBM Corp., Riverton, NJ, USA, 10 pages.

niques is increasing, refining the existing and proven techniques
can also have potential benefits. One of the aspects of such improve-
ments in the existing systems is making them flexible to modify.

1 INTRODUCTION

Currently, we have an intrusion detection system (IDS) that defines Cybersecurity is a vital concern as networks surround all aspects of
the normal patterns of a network behaviour using constraints. The our lives. While the internet may put our information and identity
IDS dissects the network packets into network information to eval- at risk, closed safety-critical network systems such as air traffic
uate the constraints. In this research, we extend the existing IDS to control systems (ATC) or nuclear plants may put lives at risk.
validate constraints defined on application data. We extend the IDS Intrusion detection systems (IDS) monitor networks for mali-
to further dissect the data within the incoming network packets. cious behaviour. IDSs emphasize the detection of malicious data at
We define the data constraints to identify possible malicious incon- the network level. However, malicious data can also occur at the
sistencies in the application data of a closed network such as the application layer. For example, the ATC systems have come to rely
Air Traffic Control (ATC) as an example. We use an ATC ontology more on Automatic Dependent Surveillance-Broadcast (ADS-B)
for the ATC domain data representation and threat evaluation. We to extend radar coverage. However, ADS-B has no authentication,
modify an existing ATC simulator and use it to generate both clean and anyone with a software defined radio can transmit false ADS-B
and malicious data. Rules and queries are then developed for these data.

data using the ontology to represent detectable threats. The queries We have previously described an IDS designed for network in-
are then transformed into application data constraints readable by tegrity of closed networks such as ATC [31]. This IDS detects ab-
the IDS. While the transformation is defined as a manual process, normal behaviour at the network level using a constraint engine. In
the IDS will be updated with automated transformation in the fu- this research, we leverage the IDS to detect the presence of attacks
ture. The data constraints are written in the same domain-specific at the application layer. It may be true that the application logic is
language (DSL) already used for the IDS that ensures real-time equipped to deal with possible corruption of data. However, appli-
performance. In this paper, we present our approach to represent cation logic is complex due to the fact that it must both validate and
and transform application-specific constraints for our IDS along operate on the data. Malicious external data is not always obvious.
with examples. Adding an additional check on the application level data provides

in-depth defense to the system.
CCS CONCEPTS We use a simulated ATC system to produce simulated air traffic

data. This data is parsed and translated into resource description
framework (RDF) [14] graph database, using an ATC ontology. We
use SPARQL [15] to develop queries that represent the integrity
of the information. We then manually translate the domain level
KEYWORDS threats to the low-level constraints used by our IDS. This allows
us to prototype the transformation, and identify changes needed
in the implementation of constraint engine to support application
ACM Reference Format: level constraints.

Ayesha Babar, Fahim Imam, Thomas R. Dean and Jose Fernandez. 2020. An
Approach to Represent and Transform Application-Specific Constraints for
an Intrusion Detection System. In CASCON °20: 30th Annual International

« Security and privacy — Network security; « General and
reference — General conference proceedings; - Networks —
Network reliability.

Intrusion Detection, Data Constraints, Program Transformation

The main contribution of our work are:

o Extension of existing constraint based IDS to identify data
Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed Integrity.

for profit or commercial advantage and that copies bear this notice and the full o A specification of transformation of a threat from natural
citation on the first page. Copyrights for third-party components of this work must language to a domain specific language, used to generate a
be honoured. For all other uses, contact the owner/author(s).

CASCON’20, November 10-13 2020, Toronto, Canada custom IDS.

© 2020 Copyright held by the owner/author(s). o Testing and evaluation of data constraints with the existing

IDS framework.
e Proposing required extensions in the existing framework for
new proposed data constraints.

53

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

CASCON 20, Nov 10-13, 2020, Toronto, Canada

The structure of the rest of the paper is as follows. Section 2
provides a description of the existing framework, ATC simulation
and ATC ontology. Section 3 discusses selected threat scenarios
of the research. Section 4 describes the transformation process,
followed by Section 5 to illustrate the transformation process. The
evaluation of IDS and results are presented in Section 6 followed by
the related work in Section 7. We conclude the paper and discuss
the future work in Section 8.

2 BACKGROUND

To model the cyber threats we use an ATC simulator developed
by Morel [26] to generate the ATC data for our IDS. Originally
developed by Hasan et al. [17], the IDS detects intrusions based
on anomalous network behaviour. The IDS is based on constraints
capable of detecting anomalies in a limited access, closed networks
such as ATC. Such networks are characterized by a limited number
of protocols which makes it possible to define the normal network
behaviour as constraints. The current version of the IDS detects
intrusions based on protocol-specific constraints. One of the goals
of this research is to extend the IDS to specify application-specific
data constraints. The IDS can then detect anomalies in the data
carried in the network packets. Figure 1 shows the IDS architecture
along with the application level extensions. The modified IDS now
implements two kinds of constraints: a) protocol-specific network
packet constraints, b) application-specific data constraints. We refer
to the former as the network constraints and the later as the data
constraints.

Application Data. The application layer supports application
and end-user processes. It provides application services for file
transfers, e-mail, and other network software services [1]. In our
research, ATC application data is generated by the air traffic control
simulation. This data is embedded in the captured network packets
and is parsed by an application data parser. Examples of applica-
tion data are the speed of an aircraft or the position of an aircraft
detected by radar. An example of a constraint on the data is that
the speed of an aircraft is within a given range. The constraints
that ensure integrity of the application domain data are referred as
application data constraints or data constraints.

Network Data. The data captured by the IDS framework that
deals with the network layer is referred to as ‘network data’ for the
purpose of our research. This data is parsed by a network parser, and
the constraints that check the integrity in this data are referred to as
network constraints. Network constraints are already implemented
and evaluated by the IDS. An example of this constraint is that the a
publisher in the Real-Time Publish-Subscribe protocol (RTPS) [13]
has previously declared that it is a participant.

2.1 The Intrusion Detection System

The input to the IDS framework is a network protocol specification
written in the Structure and Context-Sensitive language (SCL) [23].
SCL describes the syntax and the semantic constraints of a given
protocol. Since SCL supports both context dependant parsing and
specifying general constraints, it is used to generate the two main
components of the IDS: the parser and the constraint engine. The
generated custom parser reads the network packets and converts
them in a format readable by the constraint engine. The constraint

54

Babar et al.

Network
/ Constraints
— Network Alerts
— | Network Packets - DS fmmm——————— \
——> Data Alerts :
7

ATC

Simulation

ATC Ontology

Constraints

I Application J

Figure 1: The IDS architecture with extensions.

engine validates these packets against the defined network con-
straints and generates alerts.

The constraints in SCL are first transformed into an intermedi-
ate DSL which describes the constraint tree life-cycle along with
memory management. The constraints in the intermediate DSL are
then used to automatically generate the constraint engine in C. The
DSL describes the constraint tree life-cycle defined by Hasan et
al. [16] and has the following four phases: Instantiate (I), Bind (B),
Evaluate (E), and Destroy (D). We refer to the DSL as the IBED DSL
based on the life-cycle phases. The first, instantiate, occurs when an
initial packet of a constraint is encountered. This causes an instance
of the internal data structure to be allocated for a constraint tree.
The bind phase is used when additional packets are encountered
that add information to a constraint tree. The evaluate phase adds
the final data to the constraint and evaluates it. Since a constraint
may be evaluated multiple times, the destroy phase is used when a
packet is encountered that indicates that particular instance of the
constraint is redundant. Details about the IBED DSL can be found
in Rakha et al. [31].

In this approach, the constraints are intended to validate the last
packet in the constraint. The previous packets in the constraint
are used to provide needed information to validate the evaluation
packet.

2.2 The ATC Simulation

The ATC Simulation is designed and developed by Morel [26] and
generates the data used in our research. While the simulation is
not a complete representation of an ATC system it provides the
necessary components for our research [48]. The ATC is simulated
over a closed Data Distributed Service (DDS) network using the
RTPS protocol. The main components of the ATC simulation are
shown in Figure 2. An existing ATC simulator, Euroscope [8], is used
to generate and visualize ATC data using the FSD protocol (FSD and
Euroscope in the figure). We use a multiplexer to split the data and
transform it to DDS representations of Primary Surveillance Radar
(PSR), Secondary Surveillance Radar (SSR), Automatic Dependant
Surveillance-Broadcast (ADS-B) data.

2.3 The ATC Ontology

The ATC ontology defines the domain with the help of a controlled
and precise vocabulary. When describing the ATC domain, we
define the concepts that are present in the domain. For example,
speed is a concept and it has a meaning and context in our domain.
Some concepts can be explained using relations between other

An Approach to Represent and Transform Application-Specific Constraints for an Intrusion Detection System

localhost

PSR PSR
Publisher Subscriber

L

Figure 2: ATC Simulator Architecture Model, adapted from
Morel [26]

SSR
Subscriber

ADSB

Publisher Subscriber

SSR
Publisher

DDS Network 1

Raw Data
Coming from
Sensors

Ontological
concepts
identified

RDF
Model

SWRL

- Rules

=) | Ontology | m=p

= [SPARQL

Figure 3: ATOM detection process, adapted from Cor-
riveau [21].

concepts and/or objects. Some concepts can be described as data
structures. The vocabulary used for the ATC domain is concise, and
includes classes, sub-classes and relations between them.

The ATC ontology research by Morel [26] is a practical applica-
tion of the ATOM [21] process. Abstractions-Translation-Ontology-
Method (ATOM) is a step-wise method to develop an ontology for
a domain specific system.

The ATOM process produces three artifacts: the final ontology,
the translation diagram, and the specification document. The final
ontology is in the form of a Resource Description Framework (RDF)
graph [30]. RDF is the most common way of representing ontologies.
In RDF, an ontology is represented as a set of (Subject, Predicate,
Object) triplets. The subjects and objects are the nodes of the graph,
and the predicate is the property or relation between them. For
example, the instance of a concept an aircraft that has a specific
speed can be expressed in (PlaneA, hasSpeed, 370).

The ATOM process shown in Figure 3 is used to develop an ap-
proach to anomaly detection in the ATC domain. After examining
the application data in the network packets, the concepts are iden-
tified, and the RDF model is created. The RDF model is then used to
initiate the ontology. The nodes are the entities (e.g. airplane, radar,
speed) and the edges are the relations between the entities. Further
reasoning and flexibility can be added to the ontology by applying
rules. The final stage is a querying mechanism, which is used to
retrieve and update the information in the ontology. The query
language we use is SPARQL (SPARQL Protocol and RDF Query
Language) [27]. We have extended Morel’s initial ATC ontology!
for our research.

! Available at http://pyxis.ece.queensu.ca/graph/atc/ontologies/atc.owl

55

CASCON 20, Nov 10-13, 2020, Toronto, Canada

New modules have been added to the original ontology to sup-
port the representation of Flight Plan data, PSR report, and SSR
report. The core ontology is modified to provide better organiza-
tion to navigate its classes and properties. The current ontology
provides the logical framework to consistently describe, query, and
reason about different ATC attacks, including the types of attacks
described in this paper. The ontology currently includes 72 classes,
39 object properties, 40 data properties, and 250 logical axioms.

2.4 IDS and the ATC Simulator Extensions

To support the evaluation of application-specific data constraints
we have extended the existing IDS architecture as shown in Figure 4.
An application protocol specification is used to generate a parser
for the application specific data encoded in the network data. The
ontology from the ATOM Process is shown in the upper right. It is
used to initialize the graph database and also to derive a mapping
specification that identifies the relationship between the low level
data in the packets and the primitive entities and relations present
in the data. The RDF mapping is used to automatically generate an
RDF translator that populates the graph database with primitive
entities and relations. This database can be enhanced with rules and
a set of queries are identified that should be continuously evaluated
by the constraint engine. These extensions in the upper box have
been completed previously.

This paper describes the extensions in the lower box. We trans-
form the queries to a set of application level constraints which is
used to generate the application level constraint engine. This is
currently a manual transformation and we are working to automate
this transformation in the future.

The ATC Simulation was updated to take flight plan information
from EuroScope and model as flight strips in the simulated ATC
network. It was also updated to allow scripts that inject fake ADS-B
data into the simulation.

3 THREAT SCENARIOS

The nature and requirements of command and control systems
such as ATC differ from traditional IT systems. Cerchio et al. [9]
identify the primary requirements of ATC systems as Integrity and
Availability. Cerchio et al. also claim that airborne and seaborne
environments are not often considered in security research. While
the ground part of an ATC system is a closed network, it still re-
ceives outside information without verification. Threats against
open communication networks are related “mainly to message in-
sertion (confidentiality), modification (integrity) or suppression
(availability)” [34]. Thus, ATC systems are vulnerable to potential
attacks some of which are targeted directly at message integrity.
Automatic Dependent Surveillance-Broadcast (ADS-B) has be-
come a key component of ATC systems. The U.S. Federal Aviation
Administration (FAA) has required certain aircraft to have installed
ADS-B by January 2020 [29]. The threats we consider in this paper
are based on this mandate and are information attacks on ADS-B.
Balduzzi et al. [2] identify several threats against Automated Identi-
fication System (AIS) a system similar to ADS-B for ships. AIS and
ADS-B are examples of security critical networks. Both transmit
information periodically and are enhance the situational awareness
of entities in the system. ADS-B and AIS are subject to attacks

CASCON 20, Nov 10-13, 2020, Toronto, Canada

of the same nature, which are to intercept, modify, or delete the
messages [22]. We use the same categorization as Balduzzi et al. [2]
due to similarities between AIS and ADS-B. Their categorization
shows that the attacks can be done at two levels: software and
radio frequency (hardware). Among the software identified threats,
spoofing and hijacking are two major categories, and both can be
modelled under the data related attacks.

We implemented three threat models: Ghost Plane, Physical
Law Violation and Spoofed Location. They represent breach to
the integrity, confidentiality and authentication of the system. The
ghost plane threat scenario simulates malicious ADS-B data of an
aircraft that doesn’t exit. The threat can be detected if it is within
the range of primary radar, is at an altitude that is not in the radar
shadow, but is not detected by the radar. This plane can have SSR
or ADS-B updates. If outside the range of radar, a ghost plane can
be detected if it violates the law of physics. That is, if it descends
or ascends faster than the aircraft category, or turns too fast or too
slow, or has a speed outside the range of the aircraft type.

Another attack is to monitor existing ADS-B broadcasts for an
aircraft and immediately broadcast a new position that overrides
the real position. This attack can be detected based on the time
intervals of the ADS-B messages.

4 TRANSFORMATION PROCESS

Figure 5 shows the artifacts involved in both the IDS framework and
the ATOM process. For both, the network packets generated by the
ATC simulator are first parsed into useful data structures. The IDS
uses the constraints defined in IBED DSL and protocol specification
in SCL, and auto-generates the C code for the constraint engine.
The constraint engine uses the generated C code to evaluate the
constraints and ensures network integrity in real-time. The ATOM
process translates the parsed network packets into RDF triples
using a RDF translator. The resulting RDF is be stored in a graph
database. SPARQL [15] queries are used to analyze and understand
different aspects of data. The main purpose for these queries is to
diagnose and investigate the packet data for constraints that can
be used to assess the health of the data. We first transform the
SPARQL queries from the ATOM process into SCL constraints and

Babar et al.
oIS s\‘ oo ‘\‘
. ‘--1---- Manual ___
SCL Constraints | _ _ . Transformation. 1=~]
D SPARQL Queries
Manual
Transformation
IBED DSL -7
Ontology + Rules
Constraints
C code RDF
AN \, 4
‘\ _________________ f’
DS Parsed Network
Framework Packets ATOM
Process

Figure 5: Transformation of SPARQL queries to IBED DSL
constraints.

then transform the SCL constraints into the IBED DSL for our IDS
framework.

SPARQL queries are used for exploratory purposes by domain
experts to formulate the constraints at a high level. The IBED DSL
constraints are used to detect intrusions at run time by the con-
straint engine. Both SPARQL and IBED DSL queries represent the
threat in the application data domain which can be expressed in
First Order Logic (FOL). The complete transformation process con-
sists of six artifacts as shown in Figure 6.

The first artifact is a query specification in Natural Language.
Each of the steps between the artifacts up until artifact 5 (IBED DSL
of constraints) are currently manual in nature. The final step, used
to generate the C code is partially automated. We now describe
each step below and explain the involved representations.

Step 1: Query Specification in Natural Language.

We start by naming the queries that represent the respective
threat. We define them as a concise statement in natural language.
We try to remove as much syntactic or lexical ambiguities as possi-
ble. This definition helps in the true representation of the query.

This definition provides a basis for the FOL representation of
the queries in the next step.

Network Protocol Network

Vé \
RDF “—| Ontology

App. Protocol

Specification Constraints

v v

Specification

Mapping

v

[
1
1
1
1
1
I—»[Network Parser] - [Network CE] [App. Data Parser]—'l ﬁ%DF Translator]
INetwork Packets 1 t
[}
\

\

1

1

: 1
v — |
GraphDB |1

1

1

]

7’ ~

App. Data CE

. -

|
| }

@ “...[App.Data
N ' onstraint 7
-

- e e e e e e e e o e e

Figure 4: IDS runtime framework architecture.

56

An Approach to Represent and Transform Application-Specific Constraints for an Intrusion Detection System

| 1 Query Specification in Natural Language |
|
| 2 Query Description in FOL using ATC ontology |
!
| 3 SPARQL Representation of Queries |
!
| 4 SCL Representation of Constraints |
I
| 5 IBED DSL Representation of Constraints |
|
| 6 Generated C code for Constraints |

Figure 6: Transformation process from Natural Language to
low-level constraint engine code.

Step 2: Query Description in FOL using ATC Ontology. In
this step we decompose the natural language description of the
queries into concepts and relations using the ATC ontology. Once
a query is broken down into basic concepts and relations, we can
represent it in FOL. For example, the FOL representation of the
statement “if an aircraft has an SSR report and that SSR report has
some reported speed s then s is the speed of that aircraft” is:

Vx : Aircar ft Ir : SSRReport 3s : ReportedSpeed
hasSSRReport(x,r) A hasReportedSpeed(r,s) — hasSpeed(x, s)

The FOL statements are used to construct the SPARQL queries as
part of the next step.

Step 3: SPARQL Representation of Queries.

The FOL description use the ATC ontology vocabulary which
gives context to the concepts and relations of the queries. The
context forms the basis for the SPARQL query representation. We
use RDF to represent and store application data. We translate the
raw data of the packets to RDF and store in a graph database. After
translating the FOL queries to SPARQL, the graph database provides
an executable environment to refine the queries and test them
against the simulated data.

Step 4: SCL Representation of Constraints.

This step maps the queries from the concepts in the ontological
space as expressed by RDF and SPARQL to the network protocol
space as expressed by SCL. This moves representation of the queries
closer to the network level. For example, the concept speed is
mapped to the protocol data SSRModeSType. airspeed.

The Structure and Context-Sensitive Language (SCL) is an ex-
tension of ASN.1 (a network specification language widely used by
network engineers). SCL provides a higher abstraction compared
to the IBED DSL, but is still attached to the representation and
organization of the data given by the protocol specification.

SCL specifies the behavior of the IDS for the incoming packets.
Each packet must have one or more constraints that specify the
validity of the packet [18]. The SCL constraints specify the how
the information in the specified packet depends on information in
previous packets. For example, the maximum reasonable speed of

57

CASCON 20, Nov 10-13, 2020, Toronto, Canada

an aircraft in an ADS-B packet depends on the type of the aircraft
which was a field in an earlier flight strip packet.

1 <constraints>

2 <constraint>

3 TYPE: SINGLE-PACKET-ENV

4 VALID-ENV: @RTPS.DATA_P (SrcIP, DstIP, DstPort)
5 </constraint>

6

7 <constraint>

8 TYPE: MULTI-PACKET

9 VALID-SEQ: (1)RTPS.DATA_W, @RTPS.GAP

10 {

11 @RTPS.GAP.SrcIP == (1)RTPS.DATA_W.SrcIP
12 @RTPS.GAP.writerEntityID ==

13 (1)RTPS.DATA_W.writerEntityID

14 3}

15 </constraint>
16 </constraints>

Listing 1: Syntax convention of SCL SINGLE and MULTI
packet constraints [18].

Listing 1 shows an example of two constraints in SCL. The key-
word TYPE indicates if the constraint is on a single packet (the
value SINGLE-PACKET-ENV), or if it involves multiple packets (the
value MULTI-PACKET). The TYPE is followed by the sequence of the
packets required for the and the type of the target packet. The
target packet is prefixed with the symbol ‘@’. For single packet
constraints, there is only one packet involved, the target packet.

Listing 1 has a single-packet environment constraint (lines 2-4).
Environment constraints refer to entities in the particular environ-
ment. Our constraint engine has two modes. When first run on
a new system, environmental constraints record the information
in the constraints, such as the IP addresses of RTPS participants
(DATA_P), or the publishers of particular data topic. As such, envi-
ronmental constraints list the fields to be memorized as part of the
constraint.

For a multi-packet constraint, the target packet is always the last
or second last packet in the sequence, as the constraint is written
from the point of view of the last packet that triggers the constraint.
It may by optionally followed by the packet type that indicates that
the instance of constraint is no longer needed (prefixed with the
symbol ‘~’.In Listing 1, a GAP submessage in the RTPS protocol
must be proceeded by a publisher packet (DATA_W) that introduces
the entity id in the gap packet.

Step 5: IBED DSL Representation of the Constraints. Trans-
formation specification of constraint from SCL to an IBED DSL
representation is the final step our transformation process. IBED
DSL code maps the packets to the constraint tree life-cycle: instan-
tiate, bind, evaluate and destroy. The IBED DSL constraint trees can
perform real-time evaluation and provide efficient memory man-
agement for the constraint engine [31]. As part of this research the
IBED DSL was extended to handle concepts that had not previously
been used for constraints at the network infrastructure level. The
details of the extension are described in section 6.2

Step 6: Generated C code for Constraints. The IBED DSL is
the final step of the manual transformation. The IDS framework

CASCON 20, Nov 10-13, 2020, Toronto, Canada

uses the IBED DSL to generate low-level code for constraint engine
evaluation. The generated code for the data constraints validate
the application data integrity for incoming packets and raises ap-
plication alerts. The IDS framework uses TXL (a language designed
for source code transformation [6]) for auto transformation of DSL
code to the C code. As part of this research, the translator was
extended for the new concepts identified in step 5. Other than the
extensions in the auto-generated code, IBED DSL representation
also requires some extensions for correct transformation to ¢ code.
For our application domain constraints we manually fixed the gen-
erated code for testing.

5 TRANSFORMATION EXAMPLE

In this section, we illustrate the process with one of the threats we
identified in section 3

5.1 Violation of Physical Law

This example represents one of the queries that might reveal mali-
cious ADS-B data for an aircraft that doesn’t exit. If the reported
position of an aircraft is outside the range of a radar antenna, then
there is no independent confirmation of the data. A malicious actor
might not fully check the data for consistency before broadcasting
it, particularly if they are modifying an existing attack. They may
get the speed or other characteristics of an aircraft type wrong.
This query checks that the speed of an aircraft is consistent with
the category of the aircraft.

5.1.1 Step 1 - Query Specification in Natural Language. .

Query Title: The Speed violation of an aircraft at cruising alti-
tude.

Query Definition: The speed of an aircraft is too slow or fast
while flying at the cruising altitude, based on the speed range of
the aircraft category given by the SSR reports.

Query Description: We identify the ontological concepts such
asAircraft, SSRReport, Speed and AircraftCategory along with
their relations. Every aircraft has an aircraft category. In the simu-
lation, ADS-B reports are an instance of an SSR data message. They
are distinguished from SSR radar reports by the equipment field in
the packet. The ADS-B packets for some aircraft may be received
(relation hasSSRReport). Some SSRReports (there are several type)
contain the speed of the aircraft (relation hasReportedSpeed).

5.1.2 Step 2 - Description of the Query in FOL using ATC ontology.
An aircraft has SSR report and the aircraft is identified with a
unique number called target ID in these reports. The SSR report
has information about the aircraft. Information such as the speed
of an aircraft in these reports can be expressed as:

Vx : Aircarft 3r : SSRReport 3s : ReportedSpeed
hasSSRReport(x, r) A hasReportedSpeed(r, s) — hasSpeed(x, s)

The SSR reports for aircraft have other information about the air-
craft such as the category of the plane. For example, a Boeing A380
belongs to the aircraft category C [19]. Each of these categories has
a known minimum and maximum speed.

The ADS-B reports contain the speed of the aircraft, as well as
the category of the aircraft. The following query that identifies
aircraft whose speed is outside of the range of the category:

58

Babar et al.

Vx : Aircar ft Ir : SSRReport 3c : AircraftCategory

s : ReportedSpeed Am : MaxSpeed 31 : MinSpeed
hasSSRReport(x, r) A hasReportedSpeed(r, s) A
hasReportedAircraftCategory(r, c) A hasMaxSpeed(c, m)
AhasMinSpeed(c,[) A ((s > m) V(s <1))

— hasViolatingSpeed(x, s)

Table 1 lists the ATC ontology relations used for the query. The
relations hasMaxCSpeed and hasMinCSpeed refer to the maximum
and minimum speed and are not part of the ontology vocabulary.
For these queries added as extra relations in the graph database.
The Table 1 shows the types of the domain and range for each the
properties.

Domain Predicate Range
Aircraft hasSSRReport SSRReport
SSRReport hasAirspeed xsd:integer
SSRReport hasAircraftCategory xsd:string
AircraftCategory | hasMaxCategorySpeed | xsd:integer
AircraftCategory | hasMinCategorySpeed | xsd:integer

Table 1: Step 2 - Violation of the Physical Law and Ontology
Vocabulary.

5.1.3 Step 3 - The SPARQL Query. The SPAQRL Query in listing 2
is the translation of the FOL query from the previous section. This
query is expressed in the same RDF framework as the data mapping
that was used to map the application data in network packets to the
graph database. This is the first point in time that we can test the
query against data from the simulation. This query was successfully
run against both clean data from the simulation, and data that
contained simulated malicious data.

1 SELECT ?assignedTargetID ?ssrReport

2 ?reprotedSpeed

3 FROM FastInjectedData:

4 WHERE {

5 7?ssrReport ssr:hasTargetID ?assignedTargetID;

6 ssr:hasAircraftCategory ?reportedCategory;

7 ssr:hasAirSpeed ?reprotedSpeed;

8 st:hasMaximumCategorySpeed ?maxCategorySpeed;
9 st:hasMinimumCategorySpeed ?minCategorySpeed.
10 FILTER((?reprotedSpeed < ?minCategorySpeed)

11 || (?reprotedSpeed > ?maxCategorySpeed))

12 3}

Listing 2: Step 3 - SPARQL Query for the Violation of the
Physical Law.

5.1.4 Step 4-SCL Representation. We transform the SPARQL query
to a corresponding SCL constraint. The mapping of RDF elements of
the SPAQL query to network fields used in SCL is given in Table 2.

Listing 3 gives a SCL representation of the SPARQL query. This
is an extension to the SCL language to allow a logical constraint on
the fields of a single single packet. the target packet of the constraint
is an SSR Mode S packet. The same packet destroys the instance of
the constraint that is created. The second extension to the language
is the addition of the domain element that allows the constraint

An Approach to Represent and Transform Application-Specific Constraints for an Intrusion Detection System

Ontology Relations SCL Field Name
SSrI: SSRModeSType
ssr:hasTargetID SSRModeSTyp.target_id
ssr:hasAirSpeed SSRModeSTyp.airspeed
ssr:hasAircraftCategory SSRModeSType.category
st:hasMaximumCategorySpeed | used as a scalar value
st:hasMinimumCategorySpeed | used as a scalar value

Table 2: SCL fields to the ontology relations mapping.

writer to reference elements of the domain. The constraint simply
says that the speed must be between minimum and maximum value
for the category.

1 <constraint>

2 TYPE: SINGLE-PACKET

3 VALID-SEQ: @SSRModeSType, ~SSRModeSType.
4 {(@SSRModeSType.airspeed

5 > Domain.CategoryMinSpeed) ||

6 (@SSRModeSType.airspeed

7 < Domain.CategoryMaxSpeed)?}

8

</constraint>

Listing 3: Step 4 - SCL Representation of the Violation of
the Physical Law.

5.1.5 Step 5 - IBED DSL Representation. In the SCL representation
of the constraint, it is a single packet constraint and requires com-
parison of only one value, airspeed, for each incoming SSR packet
and after comparison it can be destroyed. The IBED DSL is shown
in Figure 4.

The constraint starts with the validation tree, that has three
values, the speed of a plane, the min and max speed for a category
(categoryMaximumSpeed and the categoryMinimumSpeed).

The DSL requires both an instantiate phase and and an evaluate
phase. Nominally these are triggered by different packets and a
hash table on values shared between the packets are used to transfer
the instance of the constraint tree from one packet to the other.
The code for each packet type is generated first for instantiate,
bind second, evaluate third and last for destroy. We take advantage
of this when generating code to evaluate a predicate on a single
packet.

In the instantiate phase on line 6 through line 15 is triggered
by an SSRModeSType packet and the values required from the
incoming packets are copied to the tree. The notation has been ex-
tended with two domain information functions, DomainLookUpMax,
line 11, and DomainLookupMin, that provide external information
based on information in the packet. In this case, we use the field
aircarft$category to find the maximum and minimum speeds
of the aircraft. We store the tree instance in the hashtable for use
in the evaluate phase.

In evaluate, line 17 through line 24, we recover the tree instance
and evaluate it. In destroy we find the tree and destroy it, line
27. As the needed extensions to the constraint engine are in the
process of being implemented, a simplified version of the DSL was
implemented and after the code was generated, was hand patched

59

CASCON 20, Nov 10-13, 2020, Toronto, Canada

to add the needed operators to the evaluation of the tree and in
code for the instantiate phase.

1 CONSTRAINT AD42

2

3 V(AND(LT(speed, categoryMaximumSpeed),

4 GT(speed, categoryMinimumSpeed)))

5

6 INSTANTIATE

7 AppData PDU_AppData.Type is SSRModeSType

8 if not SEARCH Protocol~target$id :Hash=hashIAD42

9 Tree.targetId = Protocol~target$id

10 Tree.category = Protocol~aircraft$category

11 Tree.categoryMaxSpeed = DomainLookUpMax(Tree.
category)

12 Tree.catgeoryMinSpeed = DomainLookupMin(Tree.
category)

13 Key = Protocol~target$id

14 HashInstantiate = hashIAD42

15 endif

16

17 EVALUATE

18 AppData PDU_AppData.Type is SSRModeSType

19 HashBind = hashIAD42

20 if SEARCH Protocol~target$id :Hash=hashIAD42

21 Tree.category = Protocol~aircraft$category

22 Tree.speed = Protocol~groundspeed

23 EVAL Protocol~target$id , Protocol~speed

24 endif

25

26 DESTROY

27 if SEARCH Protocol~target$id :Hash=hashIAD42

28 Key=Protocol~target$id

29 HashBind = hashIAD42

30 endif

31 END

_/

Listing 4: Step 5 - IBED DSL Code for Violation of the
Physical Law.

6 EVALUATION AND RESULTS

The evaluation shows that constraint engine can be extended to
handling not only network constraints but application data con-
straints as well. It also shows that the ontology and SPARQL can
be used to evaluate potential threats in the domain/ It shows that
we can implement the SPARQL queries in the constraint engine
and enforce them at the network level. In addition to the constraint
detecting the violation of physical laws, we applied the process to
the other two threats identified in section 3.

6.1 Evaluation of SPARQL

All three threats were expressed as SPARQL queries on our ATC
ontology. We generated four data sets. One contains only the clean
data from a Euroscope scenario file. We created three scripts that
injected malicious data for each of the three threats. Three graph
databases were created, each with one set of data. Each query was
run against the clean graph database and the malicious data set for
that threat. The result of the SPARQL queries is shown in table 3.
In one case, the SPARQL query successfully detected the mali-
cious data, and processed the clean data without incident. In the
ghost plane attack scenario, the range of the primary radar was set
to the range used by EuroScope. However, this ended up with an
edge condition in which an aircraft came into range and broadcast

CASCON 20, Nov 10-13, 2020, Toronto, Canada

Threat Normal Trace Attack Trace

Physical Law Violation No alerts Correct detection
Ghost Plane 1 false alert Correct detection
Spoofed Location 2 false alerts Correct detection

Table 3: SPARQL Query Results.

an ADS-B message before the simulated radar detected the aircraft.
Revising the query to use a slightly smaller range of radar to en-
sure that the radar picks up a legitimate aircraft before an ADS-B
message is considered malicious.

The third attack scenario is that the position of an existing air-
craft is altered by immediately following a legitimate ADS-B mes-
sage with a malicious ADS-B message with a false position. This
query detects this attack by examining the period between ADS-B
messages. However, there were two cases in the clean scenario
where EuroScope generated legitimate updates that were closer
than threshold used in the query.

6.2 Evaluation of IDS

The results of evaluation the application data constraints with the
constraint engine are summarized in figure 4. The ghost plane and
the violation of the physical law constraints have the same results
as the SPARQL queries. The IBED DSL features needed for the
spoofed location query were not available, even using the approach
of using a placeholder and manually correcting the generated code.

Threat Normal Trace Attack Trace
Physical Law Violation No alerts Correct detection
Ghost Plane 1 Case Correct detection
Spoofed Location Not complete Not Complete

Table 4: IBED DSL Results.

One of the contributions of this research is to identify the exten-
sions required in the IBED DSL to implement application domain
data constraints. The two needed extensions are:

o All three application data constraints rely on external infor-
mation to be evaluated successfully, such as the ‘range of a
radar station’. But this information is not available in any
packet. We added domain functions such as DomainLookup-
Max in line 11 of listing4. These allow facts about the real
world to be added to constraints.

e The current IBED DSL does not support a constraint on a
single packet, as most single packet issues at the network
level are handled in the protocol parser. We constraints on
single packets that aren’t limited to the parsing of the packet.

o The existing IBED DSL implementation has a limited num-
ber of logical and relational operators, and no arithmetic
operators. These are needed if more general constraints are
to be implemented. We generalized the constraint trees to
include arithmetic, logical and relational operators.

7 RELATED WORK

There are three areas of related research. The first is redundancy
checking and correlation of data. The second is related research in

60

Babar et al.

intrusion detection, first order logic and data integrity. The last is
work related to the types of threats we investigate.

7.1 Redundancy Checking

Co-relating available information is one of strategies that can be
effective in the existing security of any system. This co-relation can
be done between different types of data, between data of different
systems or between data from different layers of same system.
Choo et al. [5] propose that the cyber attacks are ‘coordinated” and
are ‘interconnected’. The main defense of such attacks requires
an infrastructure that includes data analytics. Choo et al. suggest
that a research challenge is the intelligent analysis of data that is
collected from different layers of network security.

Every detection system has the potential to raise false alarm.
Ducharme [10] notes that most of the time the consequences of
false alarms are resources and time. He notes that to avoid the
consequences, it is important to understand the false alarms and be
able to co-relate them. Eschelbeck et al. [12] note the importance of
the assessment and correlation of data between different systems.
They identify the need for correlation of information and used a
correlation engine with Snort IDS to reduce and validate alerts.

Parnas et al. [28] suggest a “triple redundancy” approach for
safety critical systems. The main system of any critical system must
perform reliably. Any backup systems must be independent. Parnas
et al. suggest that double or triple failure in a disjoint infrastructure
is less likely. We do not claim data integrity checking in the IDS is
a replacement for data integrity checking in command and control
systems such as ATC. Using an IDS to validate application data
adds redundancy and more confidence in the overall security of the
system.

7.2 Related IDS

Many organizations use security information and event manage-
ment (SIEM) systems to get an overall view of the information
security activity and enforce data integrity [24]. In general, SIEM
systems are designed to process security events which are gen-
erated by network security solutions [3]. SIEM systems gather a
considerable amount of data for analysis from different sources in
various formats. SIEM has many advantages, but there are limita-
tions. To make any sense of this data it must be converted into a
consistent format [35]. Security reports and dashboards provided
by SIEM systems are useful for security staff and management,
because they show several security metrics and the general state of
information security within organizations [25].

But these reports, logs and alerts contain a significant amount
of data. SIEM rules are used to correlate this information. Majeed
et al. [20] suggest that many SIEM systems are incapable of giving
the status of these rules in real time. Our approach may be adapted
to allow critical rules to be validated in real time.

Andrea et al. [4] investigate using an IDS that represent the states
of the system using a rules language for Industrial Control Systems
(ICS). Like our approach they work with a domain specific network.
We focus on data in command and control systems such as ATC.
Elfaki et al. [11] also based their intelligent rules on first order logic
to better detect inconsistencies. We use FOL for representation of
our threats, which are then transformed to IBED DSL constraints.

An Approach to Represent and Transform Application-Specific Constraints for an Intrusion Detection System

’ e S

1 N . .
I, : 'l 2 5
: Ghost Plane ! | — |
! DSL .\—» Application |
I Constraints :
[}

[}

: Physical |
: Law DSL :
' Network |
! .
: Spoof DSL Constraints :
! 1
1
\

CASCON 20, Nov 10-13, 2020, Toronto, Canada

All Constraints

Combined
Alerts

Constraint
Engine

Figure 7: Contributions

7.3 Threats and Attacks

Costin et al. [7] in Ghost in the Air identify security issues in ADS-B
and show that attacks on the ADS-B are not only possible, but
easy. In ATC systems, data provided by ADS-B is trusted and lacks
security as a key feature [7] [33]. Costin et al. emphasize adding
the most basics authentications. Our physical law violation threat
model is a demonstration of the lack of such basic authentication.
Abnormal behaviour can be indicative of something that needs to
be further investigated.

Ray et al. [32] propose using an ontology for threat models.
They suggest starting by familiarizing oneself with the domain
by interviewing domain experts before building a threat model.
Balduzzi et al. [2] provided a categorization of attacks on AIS. AIS
and ADS-B share many of the same vulnerabilities and threats.

8 CONCLUSIONS AND FUTURE WORK

In this research we extend an existing constraint based IDS to
identify data integrity at the application level. We demonstrate
the extensions in the domain of air traffic control. Figure 7 is a
representation of the contributions. We specify a set of transfor-
mations from natural language to SPARQL queries to IBED DSL
constraints, that can be used to generate a custom IDS which are
shown on the left of figure 7. We test our proposed application
data constraints with our current IDS framework. The evaluation
demonstrates some elements of the DSL and generator that must be
extended to fully support application data constraints as shown in
region 2 of Figure 7. We show that with the extensions, application
data constraints can use the same life-cycle as our network con-
straints. We propose and present a set of application domain data
constraints for the ATC domain, using the same auto-generated
framework.

The future work for our research will focus on extensions to
the SCL and the IBED DSL. More application data constraints
should be evaluated and the work on mutli-packets constraint will
be completed. The IDS framework is currently generated semi-
automatically. The extensions identified in this research are in the
process of being integrated into the constraint engine generator.

The IDS is now capable of working on ensuring integrity in two
different aspects of a system, network and data. One interesting

61

dimension would be to explore defining constraints on another
aspect or working layer, to see if that adds further security.

In conclusion, some application domain data can be evaluated
at the network level. Industrial control systems and command and
control applications are often complex, and while security is a criti-
cal component, it is one of many components for critical systems.
Our approach adds a redundant check of the integrity of application
data in the intrusion detection system, where the sole focus is on
the system security.

We also provide an example of using the ATOM process to use
an Ontology to evaluate application integrity in the air traffic con-
trol domain using queries. We then transform them to a low level
constraint representation that can be validated in real time.

9 ACKNOWLEDGMENTS

We would like to acknowledge funding from the Department of
National Defense.

REFERENCES

[1] ISO/IECJTC 1. 1994. ISO/IEC 7498-1:1994 Information technology — Open Systems
Interconnection — Basic Reference Model: The Basic Model. International Standards
Organization, Geneva, Switzerland.

[2] Marco Balduzzi, Alessandro Pasta, and Kyle Wilhoit. 2014. A Security Evaluation
of AIS Automated Identification System. In Proceedings of the 30th Annual Com-
puter Security Applications Conference (New Orleans, Louisiana, USA) (ACSAC °14).
ACM, New York, NY, USA, 436-445. https://doi.org/10.1145/2664243.2664257

[3] S.Bhatt, P. K. Manadhata, and L. Zomlot. 2014. The operational role of security
information and event management systems. IEEE Security & Privacy 12 (2014),
35 -41.

[4] Andrea Carcano, Igor Nai Fovino, Marcelo Masera, and Alberto Trombetta. 2010.
State-Based Network Intrusion Detection Systems for SCADA Protocols: A Proof
of Concept. In Critical Information Infrastructures Security, Erich Rome and Robin
Bloomlfield (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 138-150.

[5] Kim-Kwang Raymond Choo and Ali Dehghantanha. 2018. Introduction to the
Minitrack on Cyber Threat Intelligence and Analytics: A Conceptual Three-
Pronged Approach and Future Research Agenda. In Proceedings of the 51st Hawaii
International Conference on System Sciences. 5521 — 5523. https://doi.org/10.
24251/HICSS.2018.688

[6] James R. Cordy. 2006. The TXL source transformation language. Science of
Computer Programming 61, 3 (2006), 190 — 210. https://doi.org/10.1016/j.scico.
2006.04.002 Special Issue on The Fourth Workshop on Language Descriptions,
Tools, and Applications (LDTA 4AZ04).

[7] Andrei Costin and Aurélien Francillon. 2012. Ghost in the Air(Traffic): On

insecurity of ADS-B protocol and practical attacks on ADS-B devices. In BLACK-

HAT 2012, July 21-26, 2012, Las Vegas, NV, USA. Las Vegas, UNITED STATES.

http://www.eurecom.fr/publication/3788

Gergely Csernak. [n.d.]. EuroScope User Guide, for Version 3.0a. https://www.

euroscope.hu/documents/EuroScopeUsersGuide30.pdf. Accessed: 2019-10-29.

—_
o)

https://doi.org/10.1145/2664243.2664257
https://doi.org/10.24251/HICSS.2018.688
https://doi.org/10.24251/HICSS.2018.688
https://doi.org/10.1016/j.scico.2006.04.002
https://doi.org/10.1016/j.scico.2006.04.002
http://www.eurecom.fr/publication/3788
 https://www.euroscope.hu/documents/EuroScopeUsersGuide30.pdf
 https://www.euroscope.hu/documents/EuroScopeUsersGuide30.pdf

CASCON 20, Nov 10-13, 2020, Toronto, Canada

[9] R.De Cerchio and C. Riley. 2012. Aircraft systems cyber security. In 2012 Inte-
grated Communications, Navigation and Surveillance Conference. 1-12. https:
//doi.org/10.1109/ICNSurv.2012.6218454

[10] E. Ducharme. 2017. Détection d’intrusion a Uaide d’un systéme expert basé sur

'ontologie. Master’s thesis. Ecole Polytechnique de Montréal.

Abdelrahman Osman Elfaki, Somnuk Phon-Amnuaisuk, and Chin Kuan Ho.

2009. Investigating Inconsistency Detection as a Validation Operation in Software

Product Line. Springer Berlin Heidelberg, Berlin, Heidelberg, 159-168. https:

//doi.org/10.1007/978-3-642-05441-9_14

Gerhard Eschelbeck and Michael Krieger. 2003. Eliminating noise from intrusion

detection systems. Information Security Technical Report 8 (04 2003), 26 — 33.

https://doi.org/10.1016/S1363-4127(03)00004-9

[13] Object Management Group. [n.d.]. The Real-time Publish-Subscribe Protocol
(RTPS) DDS Interoperability Wire Protocol Specification. https://www.omg.org/
spec/DDSI-RTPS/2.3/Betal/PDF. Accessed: 2019-05-22.

[14] RDF Working Group. 2014. Resource Description Framework (RDF). https:
/Iwww.w3.0org/RDF/. (2014).

[15] SPARQL Working Group. 2008. SPARQL Query Language for RDF. https://www.

w3.org/TR/rdf-sparql-query/. (2008). Accessed: 2020-06-12.

MD Siam Hasan, Thomas Dean, Fahim T. Imam, Francisco Garcia, Sylvain P.

Leblanc, and Mohammad Zulkernine. 2017. A Constraint-based Intrusion Detec-

tion System. In Proceedings of the Fifth European Conference on the Engineering

of Computer-Based Systems (Larnaca, Cyprus) (ECBS ’17). ACM, New York, NY,

USA, Article 12, 10 pages. https://doi.org/10.1145/3123779.3123812

[17] M. S. Hasan, A. ElShakankiry, T. Dean, and M. Zulkernine. 2016. Intrusion
detection in a private network by satisfying constraints. In 2016 14th Annual
Conference on Privacy, Security and Trust (PST) (Aukland, New Zealand). 623-628.
https://doi.org/10.1109/PST.2016.7906997

[18] Fahim Imam. 2020. Specifying Constraints in SCL5 for Intrusion Detection. Tech-
nical Report. http://pyxis.ece.queensu.ca/papers/compasstr20-1.pdf/ [Online;
Accessed: 2020.02.13].

[19] Legal Information Institute. [n.d.]. Aircraft approach category. https://www.

law.cornell.edu/cfr/text/14/97.3 [Online; accessed 14-June-2020].

Abdul Majeed, Raihan ur Rasool, Farooq Ahmad, Masoom Alam, and Nadeem

Javaid. 2019. Near-miss situation based visual analysis of SIEM rules for real time

network security monitoring. Journal of Ambient Intelligence and Humanized

Computing 10, 4 (01 Apr 2019), 1509-1526. https://doi.org/10.1007/s12652-018-

0936-7

Simon Malenfant-Corriveau. 2017. PROPOSAL FOR A METHOD OF DEVELOP-

ING ONTOLOGY FOR A SYSTEM EXPERT IN SECURITY. Master’s thesis. Ecole

Polytechnique de Montréal.

[22] Mohsen Riahi Manesh and Maima Kaabouch. 2017. Analysis of Vulnerabil-

ities, Attacks, Countermeasures and Overall Risk of the Automatic Depen-

dent Surveillance-Broadcast (ADS-B) System. https://doi.org/10.1016/j.ijcip.

2017.10.002. Int. J. Crit. Infrastruct. Prot. 19, C (Dec. 2017), 16a4AS31. https:

//doi.org/10.1016/j.ijcip.2017.10.002

Sylvain Marquis, Thomas R. Dean, and Scott Knight. 2005. SCL: A Language for

Security Testing of Network Applications. In Proceedings of the 2005 Conference

of the Centre for Advanced Studies on Collaborative Research (Toranto, Ontario,

Canada) (CASCON @AZ05). IBM Press, 1554A5164.

Pal Michelberger and Sandor Dombora. 2016. A Possible Tool for Development

of Information Security- Siem System. Ekonomika, Journal for Economic Theory

and Practice and Social Issues 1350-2019-2051 (2016). https://doi.org/10.22004/ag.

econ.288703

Raydel Montesino, Stefan Fenz, and Walter Baluja GarcAna. 2012. SIEM-based

framework for security controls automation. Information Management & Com-

puter Security 20 (10 2012). https://doi.org/10.1108/09685221211267639

[26] L.-P Morel. 2017. Using Ontologies to Detect Anomalies in the Sky. Master’s thesis.

[27] Ontotext. 2019. What is SPARQL. https://www.ontotext.com/knowledgehub/

fundamentals/what-is-sparqgl/. (2019). Accessed: 2020-02-13.

David Parnas, Jan Madey, and G. Asmis. 1991. Assessment of safety-critical

software in nuclear power plants. Nuclear Safety 32 (04 1991).

[29] CEFR Part. 91. Automatic Dependent Surveillance-Broadcast (ADS-B) Out Per-

formance Requirements to Support Air Traffic Control (ATC) Service. Final Rule

91 (91).

Y. Raimond and G. Schreiber. 2014. RDF 1.1 primer. http://www.w3.org/TR/2014/

NOTE-rdf11-primer-20140624/. (2014).

[31] Mohamed Sami Rakha, Fahim T. Imam, and Thomas R. Dean. 2019. Generating a

Real-Time Constraint Engine for Network Protocols. In 12th IFIP International

Conference on Information Security Theory and Practice (WISTP) (Information

Security Theory and Practice, Vol. LNCS-11469), Olivier Blazy and Chan Yeob

Yeun (Eds.). Springer International Publishing, Brussels, Belgium, 44-60. https:

//doi.org/10.1007/978-3-030-20074-9_5 Part 2: Real World.

Cyril Ray, Romain Gallen, Clement Iphar, Aldo Napoli, and Alain Boujou. 2015.

DeAIS project: Detection of AIS spoofing and resulting risks. IEEE, OCEANS 2015

- Genova, Genoa, Italy. https://doi.org/10.1109/OCEANS-Genova.2015.7271729

(11

[12

[16

[20

[21

[23

[24

[25

[28

[30

[32

62

Babar et al.

[33] SC-186.2009. DO-282B, Minimum Operational Performance Standards for Universal

[34

[35

]

Access Transceiver (UAT) Automatic Dependent Surveillance-Broadcast (ADS-B).
Technical Report. 1150 18th NW, Suite 910 Washington, DC 20036 USA.

Lucio Vismari and JoA&o Junior. 2011. A safety assessment methodology applied
to CNS/ATM-based air traffic control system. Reliability Engineering & System
Safety - RELIAB ENG SYST SAFETY 96 (07 2011), 727-738. https://doi.org/10.
1016/j.ress.2011.02.007

Peter Zegzhda, Dmitry Zegzhda, Maxim Kalinin, Alexander Pechenkin, Alexander
Minin, and Daria Lavrova. 2016. Safe Integration of SIEM Systems with Internet
of Things: Data Aggregation, Integrity Control, and Bioinspired Safe Routing.
In Proceedings of the 9th International Conference on Security of Information and
Networks (Newark, NJ, USA) (SIN '16). ACM, New York, NY, USA, 81-87. https:
//doi.org/10.1145/2947626.2947639

https://doi.org/10.1109/ICNSurv.2012.6218454
https://doi.org/10.1109/ICNSurv.2012.6218454
https://doi.org/10.1007/978-3-642-05441-9_14
https://doi.org/10.1007/978-3-642-05441-9_14
https://doi.org/10.1016/S1363-4127(03)00004-9
 https://www.omg.org/spec/DDSI-RTPS/2.3/Beta1/PDF
 https://www.omg.org/spec/DDSI-RTPS/2.3/Beta1/PDF
https://www.w3.org/RDF/
https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://doi.org/10.1145/3123779.3123812
https://doi.org/10.1109/PST.2016.7906997
http://pyxis.ece.queensu.ca/papers/compasstr20-1.pdf/
https://www.law.cornell.edu/cfr/text/14/97.3
https://www.law.cornell.edu/cfr/text/14/97.3
https://doi.org/10.1007/s12652-018-0936-7
https://doi.org/10.1007/s12652-018-0936-7
https://doi.org/10.1016/j.ijcip.2017.10.002
https://doi.org/10.1016/j.ijcip.2017.10.002
https://doi.org/10.1016/j.ijcip.2017.10.002
https://doi.org/10.1016/j.ijcip.2017.10.002
https://doi.org/10.22004/ag.econ.288703
https://doi.org/10.22004/ag.econ.288703
https://doi.org/10.1108/09685221211267639
https://www.ontotext.com/knowledgehub/fundamentals/what-is-sparql/
https://www.ontotext.com/knowledgehub/fundamentals/what-is-sparql/
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
https://doi.org/10.1007/978-3-030-20074-9_5
https://doi.org/10.1007/978-3-030-20074-9_5
https://doi.org/10.1109/OCEANS-Genova.2015.7271729
https://doi.org/10.1016/j.ress.2011.02.007
https://doi.org/10.1016/j.ress.2011.02.007
https://doi.org/10.1145/2947626.2947639
https://doi.org/10.1145/2947626.2947639

Blockchain-based Security for Heterogeneous loT Systems

Kale Yuzik
Department of Computer Science,
University of Saskatchewan
Saskatoon, SK, CANADA
kay851@usask.ca

ABSTRACT

The Internet of Things (IoT) is being deployed in industry, public
services, and even homes. These devices are making information
more available and allow for greater automation and efficiencies.
With the rapid growth this industry is experiencing, the security of
IoT devices has not been given the attention it needs. Many of these
devices leave sensitive information exposed or may allow for mali-
cious actors to take control of them. The Internet of Things uses a
vast range of hardware which has led to many different approaches
to security. Administering a network with such variability makes it
easy for insecure configurations to be overlooked.

This paper proposes the use of blockchain technology as the
backbone to a security framework to unify IoT devices of vary-
ing resource constraints under one system. Ethereum is used to
create a secure system that is Denial of Service resistant, store en-
cryption keys, store encrypted data, and manage trust of devices.
Using the Proof-of-Authority consensus method instead of the more
common Proof-of-Work, allows for more efficient use of resources.
This system features mechanisms to include the use of LoRa LP-
WAN technology, which is often used in IoT. Tests were run on
a small network of devices while recording processor utilization.
Latencies were also measured, showing that devices with fewer
resources showed significant latencies, and suggestions as to how
these latencies can be reduced are proposed.

CCS CONCEPTS

« Information systems — Information systems applications; »
Computer systems organization — Peer-to-peer architectures;
« Security and privacy — Key management; Security services;

« Networks — Network services;

ACM Reference Format:

Kale Yuzik and Dwight Makaroff. 2020. Blockchain-based Security for Het-
erogeneous IoT Systems. In Proceedings of CASCON 2020 (CASCON’20).
IBM Corp., Riverton, NJ, USA, 10 pages.

1 INTRODUCTION

The Internet of Things (IoT) is experiencing a rapid expansion in
growth. ARM predicts that one trillion IoT devices will be manu-
factured between 2017 and 2035, and world will see a $5 trillion
boost in G.D.P. due to the industrial use of IoT technologies by
2035 [27]. The Internet of Things offers great value for uses such

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honoured.
For all other uses, contact the owner/author(s).
CASCON’20, Nov. 10-13, 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

63

Dwight Makaroff
Department of Computer Science,
University of Saskatchewan
Saskatoon, SK, CANADA
makaroff@cs.usask.ca

as monitoring critical infrastructure, which will inevitably lead to
the deployment of these systems throughout cities. Manufacturers
are driven by economic factors and those fastest to market benefit
the most. This encourages manufacturers to cut corners and take
calculated risks and there is no exception when it comes to the
security of these products. Many of these IoT devices are deployed
in remote or inaccessible locations and use low bandwidth connec-
tions. This makes servicing or updating them far more challenging
than conventional computer networks. As the use of IoT systems ex-
pands, the risks involved with failure or security breaches become
increasingly severe.

IoT traffic lights have been developed to synchronize with other
traffic lights within road networks to minimize delays and reduce
congestion [1]. While the benefits of smart road infrastructure
are considerable, if targeted by an attacker, traffic collisions could
be caused, putting lives at risk. Commercially available, internet
connected cardiac implants were found to contain a critical secu-
rity vulnerability [28]. This not only exposed data collected by
the implants, but the administration of shocks by pacemakers and
defibrillators could be altered. This documented vulnerability is
irrefutable evidence that with the growing adoption of IoT tech-
nologies the benefits are immense, but the cost of breaches will be
financially expensive and may endanger lives. For these reasons, it
is critical these systems be secure at the time they are deployed.

Current approaches to IoT networks employ cloud-based services
to collect and process data from IoT devices. These cloud-based
IoT services (such as The Things Network!) introduce a single
point of failure by means of an external agency. Should the cloud
service become compromised, all guarantees of data confidentiality,
integrity, and availability are lost. This exposure may be acceptable
for some applications, but for critical services for which society may
come to depend upon, minimizing/eliminating these exposures is
vital. A blockchain-based security framework is proposed to address
these issues with cloud-based IoT services.

Due to the inexpensive and low-power hardware used for IoT
systems, five categories of constraints apply: compute power, mem-
ory capacity, persistent storage capacity, connectivity bandwidth,
and power source. Some limitations that may exist for one IoT de-
vice may not be an issue for another. Given this broad range of
devices, the question of how to design a security framework that
caters to the needs of these heterogeneous devices arises. Using
dissimilar solutions for devices of varying hardware resources is
not only cumbersome, but introduces security concerns itself. With
more solutions come greater potential for configuration errors and
complexity of administration.

!https://www.thethingsnetwork.org/

https://www.thethingsnetwork.org/

CASCON’20, Nov. 10-13, 2020, Toronto, Canada

This paper explores the application of blockchain technology to
create a unified security framework for IoT devices with heteroge-
neous compute resources. The remainder of this paper is organized
as follows. Section 2 describes the component technology of the
problem domain, while Section 3 gives a brief overview of similar
previous work. Section 4 outlines the implementation and configu-
ration of the test environment, Section 5 provides proof-of-concept
results for the test network, and Section 6 draws some insight
and analysis. Section 7 provides a summary and suggests future
directions.

2 BACKGROUND

When assessing information security there are three fundamental
qualities that must be considered. These qualities form what is
referred to as the CIA triad: Confidentiality, Integrity, and Avail-
ability [18]. Confidentiality refers to the secrecy of data from those
who are not authorized to view or access it. Data can be kept confi-
dential using cryptographic techniques. Integrity is an assurance
that the data can neither be altered or forged. The integrity of data
can be protected through the use of digital signatures. These signa-
tures provide means to authenticate the origin of the data as well
as detect if the data has been altered. Availability is the property
that adversaries cannot prevent or hinder access to data or services
required to process/transmit/receive that data. This can be guarded
using peer-to-peer technologies to provide redundancy, thereby
increasing the availability of data.

Decentralized technologies such as blockchain present a unique
advantage over the traditional client-server model. They offer a
resistance to Denial of Services (DoS) and Distributed Denial of
Service (DDoS) attacks [19], owing to the lack of a single point of
failure [2] and distributed ledger containing the desired data. Cisco
has projected 15.4 million DDoS attacks will occur in 2023, nearly
double the 7.9 million which were expected in 2018 [12].

2.1 Blockchain

Dwork and Naor [15] first introduced the idea of Proof-of-Work, a
way of providing means for making an assertion without the need
of cryptographic trust, a precursor to Blockchain. Vishnumurthy
et al. [29] made use of the concept of Proof-of-Work by creating a
credit system to incentivize equal contribution of all nodes within
peer-to-peer systems. This system provided a public ledger of trans-
actions and involved the payment of “karma”, a digital token for
work performed by peers. Nakamoto [24] developed the idea of a
decentralized, anonymous digital currency, now known as Bitcoin.

Blockchain is essentially a distributed database [21] that consists
of chunks of data (blocks) that are linked together in a linear order.
Each block contains the cryptographic hash of the block prior [24].

In the Proof-of-Work (PoW) consensus scheme, miners assemble
a block with pending transactions. A miner assigns an arbitrary
value to the nonce (number used once) field and calculates the
hash of this proposed new block. The miners then check if the
hash is less than the difficulty value [3]. When a miner succeeds,
it broadcasts its newly mined block to connected peers, who then
verify its validity. If valid, the network accepts the block, and work
begins on the next block. Miners race with others to find values
which satisfy these criteria. The difficulty is adjusted to maintain a

64

Kale Yuzik and Dwight Makaroff

predetermined duration of time between creation of new blocks,
which is called the “block time”.

A change in any block along the chain will result in one of
these hashes not matching. For an attacker to successfully alter an
existing portion of a blockchain, they must re-mine every block
from the victim block on until the length of their altered blockchain
exceeds the length of the currently accepted chain.

Finding a hash which meets the required difficulty parameter
involves continual computation [3], and because mining is a race
for the next block, it is only viable on hardware above a threshold
of computational power. For this reason, Proof-of-Work is an im-
practical solution for securing a blockchain running on a network
of low power IoT devices.

As an alternative to Proof-of-Work consensus, a voting-based
system known as Proof-of-Authority (PoA) [13] may be used, in
which blocks are approved (or rejected) by authorized accounts
known as signers. The use of a PoA consensus algorithm creates a
permissioned blockchain, whereas with PoW the blockchain would
be permissionless. De Angelis et al. [13] analyzed permissioned
blockchain consensus algorithms in terms of the CAP (Consis-
tency/Availability/Partition tolerance) theorem [16] and perfor-
mance. The implementations of PoA known as Aura and Clique
were examined, as well as Practical Byzantine Fault-Tolerant (PBFT)
schemes. While there were trade-offs in terms of the CAP theorem,
Clique requires the least number of messages to achieve consensus,
thereby making it advantageous for use on resource constrained
systems.

On PoA, signers approve blocks by signing them with their cryp-
tographic key and for a network to consider a block as valid, it must
be signed by a majority of the authorized signers. Upon genesis of
the blockchain, initial signers are defined. Accounts which main-
tain the transaction process of the blockchain accumulate positive
reputation. Thus, signers can be voted in or out, based on their
reputation within the blockchain network. This system eliminates
the computationally demanding operations required by the Proof-
of-Work scheme. Additionally, PoA allows for the block time to be
explicitly set, thus allowing for some degree of control over the
latency of contract functions which mutate the contract state and
by extension, the latency in our proposed system.

2.2 Ethereum and Smart Contracts

Blockchain is best known for its use in implementing cryptocur-
rencies, but its applications are far more broad. Smart contracts are
compiled code that is uploaded to the blockchain [30, 31]. These
contracts contain functions that may be executed in a distributed
manner as required. Contracts can contain persistent state informa-
tion that is global to all devices on the blockchain. In order for the
results of contract execution to be accepted by the network, there
must be consensus on the postconditions of execution.

Smart contracts, as they are referred to in the context of Ethereum,
contain functions which are divided into two groups: those that
modify the contract state and those that do not. They have substan-
tially different performance properties. Contract functions modi-
fying the contract’s state are called by sending a transaction [30].
This is done by broadcasting the transaction data to other devices

Blockchain-based Security for Heterogeneous loT Systems

mining on the blockchain, for which the outcome state of the con-
tract must be agreed upon by the miners. The mining nodes execute
the function and must come to a consensus, introducing a latency
which is primarily dependent upon the block time. Contract func-
tions that do not modify the state variables of a contract need only
be executed locally on the device. There is no need to come to a
consensus on the result of this computation, as it does not modify
public information in any way, so the latency is imperceptible.

The Ethereum Virtual Machine (EVM) is used to execute smart
contract functions. EVM allows for looping, and thus introduced
the possibility of poorly written or malicious code to invoke an
infinite loop. As a remedy, the concept of “gas” is introduced. Each
instruction depletes a finite quantity of gas allotted to a transaction.
The sender of a transaction may choose the initial amount of gas
available; the spent gas determines transaction fees charged to the
account from which the transaction originated.

Ethereum accounts each possess their own pair of cryptographic
keys that are used to sign transactions. These same keys are used
to sign blocks when using Proof-of-Authority consensus.

2.3 Cryptography

Symmetric cryptography uses the same key to both encrypt and de-
crypt information for both parties, whereas asymmetric cryptogra-
phy involves both actors having different cryptographic knowledge
and abilities [17]. Asymmetric ciphers are more computationally
expensive and a solely asymmetric approach to encryption is not
feasible in many domains. Algorithms such as Diffie-Hellman allow
for a shared key to be derived only from knowledge of one’s own
key-pairs and the partner’s public key, preventing third parties
from determining the shared key. Another unique advantage with
asymmetric cryptography is the possibility for data to be digitally
signed and verified [17], providing a very high degree of confidence
that the data originated from the believed source (the actor which
possesses the specific key-pair).

Both Rivest-Shamir-Adleman (RSA) and Elliptic Curve Cryptog-
raphy (ECC) are asymmetric cryptographic systems. They both
provide the same functionality, but differ in underlying mathemat-
ics, computation difficulty, and security [22]. As keys become larger,
the security the cipher provides increases. When an ECC key be-
comes larger, RSA keys must grow at a disproportional rate to be
able to match the level of security [20]. ECC can offer an equal level
of security with a much shorter set of keys.

The Advanced Encryption Standard (AES) symmetric cipher has
been heavily used since its acceptance by NIST in 2001 [25]. AES
uses keys of either 128, 192, or 256 bits, with 10, 12, and 14 rounds
respective of key length. There have been limitations and shortcom-
ings identified with AES in the intervening years. A cache timing-
based attack [6] on AES exposed the possibility of key recovery.
This not only breaks the confidentiality of the current ciphertext,
but all other messages that are encrypted with the same key.

The Salsa20 stream cipher [9] offers encryption that is consis-
tently faster than AES. Salsa20 may be applied using a differing
number of rounds, with Salsa20/20 (20 rounds) being the recom-
mended standard. Cryptanalysis of Salsa20 has shown Salsa20/8 or
fewer rounds to be vulnerable to attacks [5, 9].

65

CASCON’20, Nov. 10-13, 2020, Toronto, Canada

The Salsa20 family of ciphers uses 3 operations: 32 bit addition, 32
bit XOR, and constant-distance 32-bit rotation. These instructions
are all CPU friendly, and therefore faster across a wider number of
platforms than other ciphers such as AES [9]. Due to the lack of
S-box lookup tables, Salsa20 also avoids the cache timing attacks
possible with AES.

XSalsa20 specifies a longer nonce than Salsa20 (128 bits vs. 64
bits) [8]. The nonce does not need to be secret; a third party ob-
taining the nonce does not compromise security of the cipher. The
longer nonce makes it safe to use a randomly-generated nonce.
XSalsa20 offers the exact same speed as Salsa20, with the minimal
extra cost of generating the larger nonce.

A cipher with a higher degree of diffusion does a better job in
hiding the relationship between plaintext and ciphertext. The fam-
ily of ChaCha ciphers [7] is based on the Salsa cipher and provides
improved diffusion. This modification does not increase the com-
putational expense, nor does it reduce the potential for parallelism.
In fact, ChaCha20 uses one fewer register than Salsa20, which on
some platforms may yield minor performance gains. Aumasson et
al. [5] performed a differential cryptanalysis of Salsa20 and ChaCha.
They found that while they could break up to 8 rounds of Salsa20,
they were only able to break up to 7 rounds of ChaCha (ChaCha?7).
For symmetric encryption, XChaCha20 was selected due to its im-
proved strength against cryptanalysis over other variants in the
Salsa20 family, its imperviousness to side channel attacks, and CPU
friendly operations which allows for efficient operation on embed-
ded systems.

3 RELATED WORK

Biswas and Muthukkumarasamy [10] conducted an analysis of
smart cities and how blockchain technology could be used to pro-
vide a security framework to protect them. These researchers point
out that IoT devices used in smart cities utilize various communica-
tion layer technologies such as Ethernet, Wifi, Bluetooth, 6LoWPAN,
3G, and 4G. They argue a security framework should support these
technologies and allow for communication between differing com-
munication systems. The recommendation for use of a permissioned
blockchain was made over an permissionless blockchain, due to
faster consensus and reduced potential for anonymous attacks.

Huh, Cho, and Kim [19] proposed an Ethereum-based system for
managing RSA public keys as an IoT management system. Their
proof of concept modelled electrical appliances and monitored
power consumption. Smart contracts provided an interface to set a
power usage limit when the devices would be automatically turned
off.

Ozyilmaz and Yurdakul [26] investigated an Ethereum-based
IoT data collection system. Wireless nodes used LoRaWAN to com-
municate with a “smart proxy” that performed blockchain-related
functions. This work focused on blockchain technology for decen-
tralized storage and robust data availability, but did not employ
cryptography to ensure data confidentiality. Data was stored using
Ethereum’s SWARM storage service, a peer-to-peer data storage
system. Many of the design aspects of Ozyilmaz’s work will be used
in the formulation of the system in this paper.

Minoli et al. [23] conducted an analysis of blockchain technology
in the scope of providing security for IoT. Proposals were made

CASCON’20, Nov. 10-13, 2020, Toronto, Canada

for the different roles a “Network Element” (NE) may serve in the
greater scope of the network/blockchain. Some of these configura-
tions defer protection of data integrity to other more powerful de-
vices within a network to account for NEs which may be less capable
of securing the integrity on their own. These devices include gate-
ways, and concentration nodes (routers, switches, firewalls, etc.).
Additional uses for blockchain systems for IoT are also suggested,
including device configuration, data storage, micro-payments, auto-
mated payments between things to create a shared economy, Digital
Rights Management (DRM), history of ownership throughout the
supply chain, smart cities, device communication/synchronization,
and software rollout.

Dorri et al. [14], examined the design of the blockchain itself in
the context of smart home IoT. The authors highlighted barriers to
using cryptocurrency-based blockchain systems with IoT systems.
These issues include high consumption of system resources, latency,
and scalability problems arising from the need for consensus among
nodes. A layered design of the network is proposed, involving no
need for use of Proof-of-Work. In one layer, a private blockchain
is used to connect a group of devices within a home. One device
in the home with plenty of computational resources is designated
the Smart Home Manager (SHM), which acts as the miner. At the
top layer, smart homes are connected to a public blockchain (inde-
pendent from the private blockchain), for which the SHM relays
transactions, and communicates with cloud-based services. This
separation of blockchains greatly reduces the storage needs of the
resource constrained IoT devices, as well as reduces the bandwidth
and energy demands placed on them.

4 METHOD

Ethereum will be used as the underlying blockchain technology
due to the Turing complete virtual machine it makes available for
distributed computation. While other blockchain technologies such
as Bitcoin also make scripting possible, these alternatives are not
Turing complete [11, 19], as looping is not possible. This design
choice greatly limits their practicality for use in our framework.

The resource constraints of the IoT devices restrict our design
parameters. In order to encompass this range of devices into one
system, a proxy is built into the design. This allows devices that
are incapable of running an Ethereum client to participate in the
network. The programming language used must allow for efficient
use of hardware, and allow for multiple threads to make best use of
resources. We chose C++ with a custom system to manage commu-
nication with our selected Ethereum client (Geth, see Section 4.2)
and its JSON API through Unix domain sockets, as the commonly
used Web3js library is written for JavaScript.? This keeps resource
consumption as low as possible.

A conceptual overview of the proposed system is found in Fig-
ure 1. Three different types of devices exist: devices running a
Geth client, without LoRa (Section 4.5.1), devices running a Geth
client and operating as a LoRa proxy (Section 4.5.2), and devices
not running Geth with LoRa, requiring the services of a proxy
(Section 4.5.3).

Zhttps://web3js.readthedocs.io/en/v1.2.6/

66

Kale Yuzik and Dwight Makaroff

Other client #1
‘ loT Security

Framework
smart contract

Blockchain

Other client #n

LoRa Gateways

Y (" IoT devices running Ethereum client | \
LoRa radio <1-.-> Progltam Uil oy > Geth client
' Security Framework

Y loT devices not running Ethereum clien

H loT device program

loT Security Framework
communications code

Figure 1: Architecture of the network

4.1

4.1.1 Compute Power. Embedded systems generally possess low
compute power. This amplifies the trade-offs when selecting crypto-
graphic algorithms. The trade-offs between computational latency
and security become far more pronounced than on devices with
faster processors. Security will be prioritized when reasonable,
while minimizing computational complexity.

Design Considerations

4.1.2 Memory and Storage. On some devices, memory and storage
become severely limited, in some cases as low as tens of kilobytes.
Offloading much of the work to a proxy/gateway will minimize the
memory footprint of the compiled binary for these platforms.

4.1.3 Network Bandwidth. Many IoT devices use wireless commu-
nications to perform their functions. One such common technology
is LoRa [4]. LoRa allows for throughput ranging from 0.3 Kbps to 50
Kbps, depending on configuration and regional differences [21]. The
proxy solution must operate over these low bandwidth connections,
while maintaining a high degree of security.

4.1.4 Power Source. Very often, IoT devices have limited power
supply such as batteries or solar power. Both the processor and
wireless radios can be significant consumers of energy; minimizing
power consumption is important for the feasibility of a solution.

4.1.5 Cryptographic Functions. The required cryptographic func-
tions consist of public/private key generation, Diffie-Helman key
exchange, a symmetric key cipher, and signature creation and verifi-
cation. ECC was selected over RSA, due to both its smaller key size
without compromised security and computational speed, which is
well suited to embedded systems [22].

4.2 Ethereum

The blockchain security framework was tested on a private Ethereum
network, using Proof-of-Authority as the method of consensus. Us-
ing PoA over PoW allows for more devices to participate in the
voting process, as compared to the mining process in PoW. This
makes the security of the blockchain dependent on the quantity
of signers, rather than the mining compute power. In general, this
lends itself well to a network of IoT devices, since such networks

https://web3js.readthedocs.io/en/v1.2.6/

Blockchain-based Security for Heterogeneous loT Systems

often consist of hundreds or thousands of devices. Additionally, con-
trol over block time is an advantage since this will directly impact
the latency of data sent by devices on the network.

A block time of 5 seconds was used, as it provides lower la-
tency than the block time of 12 seconds used on Ethereum’s public
blockchain which uses PoW consensus. While 1 second would re-
sult in even lower latency, the rate at which storage costs grow
must also be weighed. A test was carried out with an Ethereum
blockchain, a 5 second block time, 1 signer, and no transactions
being made. The size of chain data on the filesystem was recorded
at 5 second intervals, which showed the chain grew at an average
rate of 3465 bytes per block.

4.3 Go Ethereum Client

We selected the Go Ethereum client (Geth).? The implementation of
Proof-of-Authority used in Geth is known as Clique. Geth provides
many options and modes which allow for control over the extent
that the blockchain is stored and verified locally. These settings
allow for some adjustment over the use of system resources, such
as processor, memory, storage, and bandwidth. It has three different
modes of operation/communication: full sync, fast sync, and light
sync.

In full sync mode, Geth stores the entire blockchain on the
device and verifies every block created and transaction contained
within the blocks. This is the most resource demanding mode of
the three. As the blockchain adds blocks to the chain, the costs of
storing the chain increases. Fast sync mode, like full sync mode,
obtains all blocks since genesis and verifies all blocks, but does
not verify transactions, until a set number of blocks behind the
present head of the blockchain.* This mode trades some processing
power for bandwidth. Once a fast sync client has obtained the
entire chain, it functions the same as full sync mode. Light sync
mode consumes the least amount of system resources, with the
exception of bandwidth. In this mode, all block headers and data are
downloaded, but transactions are not obtained. Geth only randomly
validates blocks in light sync mode. The use of light mode requires
full sync mode devices on the network to serve light clients which
must be explicitly enabled on the full sync client.

4.4 Contract Design

The smart contracts will be used to store the following information
for each device:

Human friendly name,

Numeric ID (“device ID”),

Device creation timestamp,

Public encryption key,

Public signature key,

Encrypted data & nonce,

Timestamp of when data was last received,

Numeric ID of the decrypting device ("data receiver"), and
whether this device is managed by a gateway/proxy (T/F)
("gateway managed").

Shttps://geth.ethereum.org/
4Szilagyi, Péter. October, 2015. eth/63 fast synchronization algorithm #1889. https:
//github.com/ethereum/go- ethereum/pull/1889

67

CASCON’20, Nov. 10-13, 2020, Toronto, Canada

The contract facilitates the allocation of new devices, removal of
devices, changing of cryptographic keys, and storage and retrieval
of encrypted data. Some of these are administrative functions that
should only be callable by authorized Ethereum accounts. The
contract allows for an arbitrary number of Ethereum accounts to
be granted access to call such functions.

Each device is assigned a partner device which may decrypt
the sender’s data, termed a “data receiver”. Allowing for a specific
data receiver to access data from one or more devices permits
data privacy even with multiple users within a blockchain security
framework. This limits potential damage if a cryptographic key
becomes compromised.

4.5 Devices

The hardware utilized in the test network consists of 3 types Rasp-
berry Pi devices and AdaFruit Feather M0 devices® as described
more fully in Table 1. In addition to the information in the table,
the Raspberry Pi 2B+s are equiped with a Dragino LoRa (SX1276)
& GPS HAT. One AdaFruit Feather M0 device uses a 1200mAh LiPo
battery and the other devices are mains powered. All LoRa chips are
of the RF9X family, operating in the 915MHz frequency range. All
Raspberry Pis ran Raspbian on a headless installation. The devices
were run in a network as illustrated in Figure 2.

4.5.1 Devices Running Geth Client, without LoRa. Devices which
are connected to the Internet and have sufficient system resources
will run the Go Ethereum client locally. The blockchain security
framework will communicate with Geth through Unix domain
sockets to request services of the smart contract. Only devices with
more capable hardware will run Geth in full sync mode as a signer.
Other devices will be tested in light sync mode.

4.5.2 LoRa Gateways/Proxies. Devices operating as a LoRa gate-
way constantly listen for transmissions from broadcasting LoRa
devices and run a local instance of Go Ethereum. When the gate-
way receives an incoming message, it retrieves the public signature
key that corresponds to the device ID in the LoRa packet from the
smart contract. If the signature is verified as valid using the public
key, the gateway can be confident the message originated from
the claimed device. Since the gateway is already registered on the
blockchain, the smart contract implicitly trusts the gateway and
the gateway may forward the already encrypted message payload
to the blockchain. In order for the smart contract to permit the
gateway acting on the behalf of the device, the device must be
registered on the blockchain as “gateway managed”. Any gateway
is capable of pushing the data of any registered LoRa device to the
blockchain. This allows for geographic mobility of these devices.

4.5.3 LoRa Connected Devices. Systems using LoRa for connectiv-
ity do not possess the bandwidth necessary to run Go Ethereum
locally. These devices may also lack other resources to run Go
Ethereum. The Adafruit Feather MO meets none of these require-
ments, as is true for a large portion of IoT devices; mechanisms for
this category of device must be included.

Since these devices cannot run Go Ethereum, this must be done
by proxy/gateway. A protocol was created to allow for a LoRa

Shttps://www.adafruit.com/product/3178

https://geth.ethereum.org/
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://www.adafruit.com/product/3178

CASCON’20, Nov. 10-13, 2020, Toronto, Canada

Kale Yuzik and Dwight Makaroff

Table 1: Test Devices (all ARM CPUs)

l Device CPU ‘ Cores ‘ Frequency (MHz) ‘ RAM Network
Raspberry Pi 2B+ Cortex-A53 4 900 1GB WiFi and LoRa
Raspberry Pi 4B Cortex-A72 4 1500 4 GB WiFi
Raspberry Pi Zero W 117676JZF-S 1 1000 512 MB WiFi
AdaFruit Feather MO | Cortex MO ATSAMD21G18 1 1000 32KB | LoRa module (SX127X)

802.11N

Wireless Router

[

l l

- WiFi

l |

Raspberry Pi Zero W Raspberry Pi Zero W

Raspberry Pi 2B+
LoRa Gateway

Raspberry Pi 4B Clients

} Ethereum

} LoRa

Raspber}y Pi 2B+
Mains Power

Adafruit Féather MO
Mains Power

Adafruit Feather MO
Battery Power

Figure 2: Configuration of test network

gateway to act upon a device’s behalf, while maintaining data con-
fidentiality and integrity. Devices communicating over LoRa must
be authenticated and cannot be implicitly trusted. Our protocol de-
tects forged/altered data and prevents eavesdropping as described
in Section 4.6.

The custom LoRa protocol allows for a payload of up to 154 bytes
which is three times larger than LoRaWAN and by extension, The
Things Network. The packet structure is as follows:

Source and destination device ID (4 bytes each),
Message ID (1 byte),

Packet fragment number (1 byte),

Flags (1 byte),

Reserved (1 byte),

Data length (1 byte),

Message signature (64 bytes),

Cryptographic nonce (24 bytes), and

Encrypted data (max 154 bytes).

The “message ID” and “packet fragment number” are presently
unused, but are left in for future versions, to enable fragmented
messages, similar to packet fragmentation in IPv4.

When a LoRa device boots, it pre-calculates the shared key used
to encrypt data for its data receiver. This key is stored to avoid
having to recompute it, wasting processor cycles and power. Once
data is ready to be sent, it is encrypted (Section 4.6) and encapsulated
in a packet that is then digitally signed and transmitted.

4.6 Cryptography

The libSodium® library provides the desired algorithms and sup-
ported all but one of the platforms being used for testing. Minor
changes” were required to port the library to the ARM Cortex MO.

Chttps://libsodium.org

"Limited to removal of function pointers which permitted different functions to be
used. No alterations were made to functions which impact the integrity/security of
the cipher.

68

Since embedded LoRa devices do not run a local Go Ethereum
client, an external cryptography library will be used for digital sig-
natures in addition to key generation, key exchange, and symmetric
encryption. Digital signatures will utilize the Edwards-Curve Digi-
tal Signature Algorithm (ECDSA) using edwards25519 parameters.
This creates a 512-bit signature that the LoRa gateway can verify to
ensure the authenticity of the sender. Should the message have been
altered or corrupted after it is signed, it is discarded. libSodium’s
crypto_sign_init(), crypto_sign_update(), crypto_sign_final_create()
are used to create a signature and crypto_sign_final_verify() to ver-
ify a signature.

Before data can be encrypted, the shared key must be computed
between the device and its data receiver using Elliptic Curve Diffie-
Hellman key exchange (ECDH). Once the shared key has been
determined, it is used with the symmetric XChaCha20 stream ci-
pher to encrypt the data being transmitted. A 192-bit, randomly
generated nonce is used during encryption and must also be trans-
mitted and stored on the blockchain. This nonce itself does not
need to be kept secret, but is required for decryption.

Data is encrypted on an end-to-end basis. Before a LoRa device
transmits data to a gateway, it is both encrypted and signed. Upon
receipt, the gateway verifies the signature. The gateway does not
decrypt the data, as it does possess the necessary key to do so, unless
it is designated as the data receiver for the originating device. In the
case of a device running its own instance of Geth, data is pushed to
the blockchain in encrypted format and the identity of the sender
is verified in the smart contract. Data remains in this encrypted
format while on the blockchain. A data receiver may choose to
subscribe to changes to new data on the blockchain for which they
are capable of decrypting. These notifications are implemented
through Ethereum’s event logs and Go Ethereum’s eth_subscribe
JSON API calls.

The public cryptographic keys of all devices are stored on the
blockchain and can be trusted as authentic. When a signed LoRa

8https://doc.libsodium.org/public-key_cryptography/public-key_signatures

https://libsodium.org
https://doc.libsodium.org/public-key_cryptography/public-key_signatures

Blockchain-based Security for Heterogeneous loT Systems

message must be verified, the gateway retrieves the devices public
signature from the blockchain to perform the verification.

When a data receiver wishes to read encrypted data on the
blockchain, it obtains the public key of the device it is reading data
from, as well as the ciphertext, and nonce. The data receiver then
calculates the shared key using libSodium’s key exchange function
crypto_kx_server_session_keys() to perform ECDH key exchange.
This shared key is then used to decrypt the data.

5 RESULTS

In our experiments, devices pushed data to the blockchain every
6 seconds. This interval was selected so latency tests would not
be synchronized with the block time (5 seconds) and consequently
skew measurements. Data generated by each type of device consists
of the following:

Adafruit Feather M0 (LoRa): power source voltage and uptime,
RPi 2B+ (LoRa): "uptime’,

RPi Zero W: “uname -a’, ‘nproc’, ‘uptime’, and “free -h’, and
RPi 4B: "uname -a’, ‘nproc’, ‘uptime’, and “free -h".

LoRa device transmissions have fewer bytes due to the limitations of
packet payload size, and for the Feather M0’s, the lack of a general-
purpose operating system. Since the Raspberry Pi Zero Ws are the
most resource constrained devices that run their own Go Ethereum
client, data was collected with Geth running in full sync and also in
light sync mode. Fast sync was not used as it only affects the speed
of joining a blockchain and not normal operation.

While attempting to run Geth in light sync mode on the Rasp-
berry Pi Zero Ws, issues with memory usage arose. An initial --cache
value of 400 (MB) was used. This resulted in the system over-using
the swap space. The cache value was decreased to 128, but did
not alleviate the issue entirely. To further adjust for these memory
demands, the memory reserved for the GPU was decreased to 8
MB, all non-essential system services were disabled, and the system
“swappiness” value was set to 1. These changes resulted in stable
operation on the Raspberry Pi Zero Ws.

The LoRa gateway/proxy (Raspberry Pi 2B+) did not experience
any memory-related issues, as with the Raspberry Pi Zero Ws.
With 1GB of memory, the gateway is the second most memory
constrained device. This device was run with a --cache value of 512
(MB) and had a total of 969 MB of usable memory (the difference is
reserved for the GPU).

Latency was measured on The Things Network over LoRaWAN
using a Raspberry Pi 2B+ as a single channel gateway and the
other Raspberry Pi 2B+ as a LoORaWAN end node. The end node
also ran an MQTT client which subscribed to new data on this
The Things Network application. The node logged the UNIX epoch
time in milliseconds upon transmission and data notification. A
summary of the measured latencies is found in Table 2. The net-
work RTT from the LAN to The Things Network router was mea-
sured using the tcptraceroute utility, as the router does not reply
to pings. An average network latency of 63.9 ms was measured to
us-west.thethings.network:1883.

Figures 3 and 4 show latency under the experimental scenarios.
These measurements were made by transmitting text data. With
both The Things Network and the blockchain-based system, mes-
sages are subscribed to, and the time between transmission and

69

CASCON’20, Nov. 10-13, 2020, Toronto, Canada

notification are recorded. The measurements on The Things Net-
work showed a mean latency of 353 milliseconds. Measurements on
the Raspberry Pi 4B, and Raspberry Pi Zero Ws with 1 light serve
node and 2 light serve nodes showed a mean latency of 3949 ms,
19488 ms, and 18934 ms respectively.

500

450

Latency (ms)

400

Aot %k *

350

Figure 3: Measured Data Latency: The Things Network

25,000

ok

* * *+** WX Bk X

23,000

21,000

19,000

17,000 *

15,000

13,000

Latency (ms)

11,000
9,000
7,000

5,000

RPi 4 Full Sync

3,000
RPi Zero Light
Sync (1 Light
Serve Node)

RPi Zero Light
Sync (2 Light
Serve Nodes)

Figure 4: Measured Data Latency: RPi 4B Full Sync and RPi
Zero W Light Sync

CASCON’20, Nov. 10-13, 2020, Toronto, Canada

Latency measurements made on the Raspberry Pi 4B in full
sync mode showed a larger standard deviation (529.2) than the
measurements from The Things Network (13.8), however, it showed
no outlier values. This is likely due to the lack of a dependence
on an external system to process the request and transport over
the public internet. The Raspberry Pi Zero Ws also resulted in
many larger outliers in both tests. The large variance in latency
observed on the Raspberry Pi Zero Ws may be an issue for some
IoT applications. Cloud-based services such as The Things Network
offer considerably lower latencies than the blockchain-based system
in all configurations examined.

From the latency measurements, it is clear that a blockchain-
based system introduces a considerable latency. This latency is
exacerbated when using Go Ethereum’s light sync mode to reduce
processor and memory requirements. Since IoT tends to run on
abundant, inexpensive hardware, it is clear that more IoT devices
would be likely to run an Ethereum client in a light sync mode over
full sync mode. This would restrict these devices to applications
where latencies of approximately 19.5 seconds is permissible. This
cannot rival cloud-based services, such as The Things Network,
for fast delivery of data. Even on devices with sufficient resources
to use full sync mode, the latencies will clearly exceed those of
cloud-based services.

The second latency test conducted on the Raspberry Pi Zero
Ws had an additional Raspberry Pi 4B on the test network (not
shown on Figure 2). Both Raspberry Pi 4Bs were run in full sync
mode and served the Raspberry Pi Zero Ws in light sync mode.
The measurements of this experiment are shown in the right-most
boxplot of Figure 4. The additional light serve node did not reduce
the average latency, but did reduce the variance in latency. Both of
these scenarios did, however, have a substantial number of outliers.

To assess the demand on the compute resources of the devices,
the load averages were sampled over time. Data from the first 16
minutes of each experiment was discarded to eliminate any startup
effects. The Raspberry Pi Zero W load averages were sampled at
intervals reflecting the observed latency whilst the other devices
were sampled every 6 seconds.

While running the Raspberry Pi 4B in full sync mode (Table 3)
and serving light clients, the load averages were well below the
systems total load capacity of 4.0. The demand on this client will
increase as additional light clients would be added to the blockchain.
It has the capacity to service more light sync clients, but how many
cannot be concluded without larger scale evaluation.

The Raspberry Pi 2B+ operating as a LoRa gateway/proxy was
run as a a full sync node with signing autority for the Proof-of-
Authority consesus scheme. The load averages measured on this
device during operation are found in Table 4. This device was
configured to not serve light sync clients at any point. Despite the
fact that this device has less compute power than the Raspberry
Pi 4B, it experienced less load on its processor due to the lack of
serving light clients.

In full sync mode, the Raspberry Pi Zero Ws (Table 5) were
observed to have load averages well above their capacity of 1.0.
On a single core device this indicates the system is overloaded.
The Raspberry Pi Zero W is therefore not capable of running Go
Ethereum as a full sync node. When tested as a light sync node
(Table 6), on average it did not overload the processors, although

70

Kale Yuzik and Dwight Makaroff

the maximum load averages do indicate periods in which they were
overloaded.

Go Ethereum exhibited periodic bursts of heavier processor uti-
lization (Figure 5) on the Raspberry Pi 4B in full sync mode (Table 3).
This behaviour was not present on the Raspberry Pi Zero W in full
sync mode, which may be attributed to the system being overloaded.

1.80
1.60
1.40
1.20
1.00
.80
.60
40

1 Minute Load Average

.20
00

09
0z61
088¢C
0¥8¢
008
0918
02,9
0892
0¥98
0096

09501
0zstLL
08¥2ClL

Elapsed Time (seconds)

Figure 5: Load Average: RPi 4B Full Sync Node, Light Serve

6 DISCUSSION

For IoT devices which provide real-time data, such as a security
camera, this system may not offer data storage, but other services
can be rendered by the blockchain. These services include a cryp-
tographic key management system, a registry of the devices IP
address, and a remote device administration platform.

The use of a private network allowed for greater control of
blockchain parameters. These included a degree of control over
latency, avoiding need for transaction fees, and the use of Proof-of-
Authority consensus over Proof-of-Work. This also allowed for the
inclusion of some IoT devices in the security of the blockchain itself
through the voting process used in Proof-of-Authority. This could be
further leveraged in scaled up networks through the use of multiple
segregated blockchains to limit blockchain growth rate, reduce the
network throughput on each device, and increase security through
isolation.

Although the Raspberry Pi Zero Ws did manage to run the
blockchain IoT security framework as a light client, it used the
vast majority of their resources and may border on being imprac-
tical. Due to the broad range of hardware used in IoT systems, an
all-encompassing system will require more modes of operation to
best tailor the system to the needs of each device. Future designs
for a blockchain-based IoT security framework could account for
such devices (IPv4/IPv6 connected, but limited compute or memory
resources), by extending the concept of the proxy used for LoRa
devices to devices over IP networks. This would not only serve to
shift a considerable amount of the demands on the processor and
memory to a more capable device, but also reduce the latency closer
to those measured on the Raspberry Pi 4B.

Blockchain-based Security for Heterogeneous loT Systems

CASCON’20, Nov. 10-13, 2020, Toronto, Canada

Table 2: Measured Data Latencies (ms)

System N Min Max Mean Std. Deviation
The Things Network 310 341 507 353 14

RPi 4B Full Sync 249 3,441 4,586 3,949 529

RPi Zero W Light Sync | 104 16,706 24,364 19,488 1,689

Table 3: RPi 4B Load Avg as Full Sync, Light Serve

1 minutes 5 minutes 15 minutes
Mean 0.22 0.21 0.17
Minimum 0.00 0.00 0.00
Maximum 1.89 0.91 0.45

N = 1950 (after discarding)

Table 4: RPi 2B+ Load Avg as Full Sync, LoRa Gateway

1 minutes 5 minutes 15 minutes
Mean 0.10 0.10 0.13
Minimum 0.00 0.06 0.08
Maximum 0.34 0.18 0.18

N = 193 (after discarding)

Table 5: RPi Zero W x2 Load Avg as Full Sync

‘ 1 minutes 5 minutes 15 minutes

Mean 1.44 1.50 1.48
Minimum 0.43 1.00 1.04
Maximum 3.16 2.22 1.87

N = 2881 (after discarding)

Table 6: RPi Zero W x2 Load Avg as Light Sync

1 minutes 5 minutes 15 minutes
Mean 0.47 0.48 0.46
Minimum 0.00 0.21 0.21
Maximum 1.41 0.92 0.72

N = 1462 (after discarding)

Data in this system remains encrypted end-to-end. While the
data on the blockchain itself must be considered publicly visible,
data exists on the blockchain in encrypted form. The public keys
of devices also exist on the blockchain, and it is possible to pub-
licly determine the public key of the recipient device. Since the
blockchain is also an immutable ledger, this history will persist on
the blockchain. Although the cryptographic systems used are not
known to be insecure, it should be noted that if any of these ciphers
are broken, the history on the ledger will be exposed.

The integrity of data is maintained in two ways. Data that is
already on the blockchain remains immutable by virtue of the

71

design of the blockchain system itself. Secondly, data being sent to
the blockchain is validated for integrity either by the LoRa gateway
(which is trusted by the smart contract), or if the device is running
its own Go Ethereum client, the blockchain network will validate
the signature of the transaction sent to the contract. While the
gateways are not insecure, gaining control of a single gateway
would permit an attacker to exploit the smart contracts implicit
trust of the gateway. This would allow the attacker to submit data
to the blockchain on behalf of any LoRa device, but not devices
which do not use this proxy system. This level of exposure is due
to the design choice to allow any LoRa device to operate with any
LoRa gateway on the system to allow for geographic mobility of
devices. The alternative of this being each LoRa device may only
communicate with a specific gateway rendering nodes less mobile.

The availability of data that already exists on the blockchain is
extremely considerable, due to the distributed nature of blockchain
technologies. This makes the existing data almost impervious to
Denial of Service attacks. Individual nodes may be targeted and
temporarily disabled, but the greater system itself would continue
to function and previously received data from the victim device
would continue to be available.

The proposed system is vulnerable to jamming attacks by virtue
of the LoRa LPWAN technology itself. As with any wireless commu-
nications technology, a transmission can be disabled or interrupted
by overwheming the channel(s) with noise. LoRa is particulairly
succeptible to this due to its low transmission power and use of
license-free frequencies. While nothing can be done to eliminate
this vulnerability, monitoring of the most recent data timestamps
could provide an indication of potential communications issues.

Since the only devices that presently do not run their own
Ethereum client are devices communicating exclusively over LoRa,
these devices are the only class of device which cannot be implicitly
trusted. To address this, the use of digital signatures was used to
authenticate the sender. This addresses the potential issue of data
forgery, but the issue of replay attacks remains. While an attacker
cannot view the message due to it being encrypted, nor can they
alter the message due to the signatures, replaying the exact same
message will appear to LoRa gateways to be authentic. This can
be addressed by introducing a mechanism at the gateway which
examines a message identifier which must be incremented by the
sender.

While the system supports the changing of both encryption
and signature keys, issues exist regarding the communication of
new keys between LoRa-only devices and gateways. Since LoRa
is an unreliable communication network, this creates potential
inefficiencies/overhead when synchronizing keys between LoRa-
only devices and gateways. Should either class of device change one
of its keys, it would then need to inform the devices it communicates

CASCON’20, Nov. 10-13, 2020, Toronto, Canada

with over LoRa of its new public key. Should this message not be
properly received, this would lead to the public keys being out of
sync and breaking communications between the pair of devices. A
reliable protocol for the exchange of keys is therefore required for
this system to be practical in real-world applications, as changing
of cryptographic keys is paramount to the ongoing confidentiality
and integrity of data.

7 CONCLUSIONS AND FUTURE WORK

The Internet of Things is a rapidly growing industry that can solve
many novel problems and improve the efficiency of others, but it
also exposes much risk if it is not properly secured. The dangers of
vulnerable IoT devices is not merely hypothetical; security flaws
have already been found which endangered lives [28]. Blockchain
technology can provide the backbone required to create a strong,
unified security framework for a network of heterogeneous IoT
systems. Utilizing a blockchain-based solution introduced longer
latencies, but did successfully consolidate a broad range of hard-
ware into one security framework. Through additional modes of
operation, such as a proxy over IP, the maximum latencies of the
system could be reduced. In addition, our system delivers a superior
resistance to the growing threat of Denial of Service attacks, by
virtue of the distributed nature of blockchain systems. The sys-
tem presented caters well to wireless sensor networks and other
delay tolerant applications, and with further development can be
significantly improved.

Our system as described and implemented is useful for a subset
of IoT applications and could offer other functionality in a Denial
of Service resistant manner. As part of future work, the system will
be extended to more classes of devices to provide a comprehensive
framework. Ways of improving the usage of system resources will
be further explored and compared to lower the threshold of capa-
bilities that are required of devices in order to participate in the
Proof-of-Authority voting process. The use of distributed storage
systems, such as SWARM and IPFS will be explored for the use of
data storage, opposed to the smart contract state. Metrics will be
gathered with these technologies and compared to determine the
most feasible solution for resource constrained systems.

Many additional mechanisms could be added to further harden
the security of this system and expand its utility. Security can be
improved by addressing the issues of LoRa replay attacks and chang-
ing cryptographic keys described in Section 6. Additional features
could include a registry of IP addresses, and a secure remote device
administration platform. It will also be necessary to evaluate these
systems at scale and examine the tails of response time distributions
in more detail, because of the need for IoT security to be deployed
in real-time.

REFERENCES

[1] D.R. Aleko and S. Djahel. 2019. An IoT Enabled Traffic Light Controllers Synchro-
nization Method for Road Traffic Congestion Mitigation. In 2019 International
Smart Cities Conference (ISC2). IEEE, Casablanca, Morocco, 709-715.

[2] Pelin Angin, Melih Burak Mert, Okan Mete, Azer Ramazanli, Kaan Sarica, and
Bora Gungoren. 2018. A blockchain-based decentralized security architecture for
I0T. In International Conference on Internet of Things. Springer, Seattle, WA, 3-18.

[3] A.M. Antonopoulos. 2014. Mastering Bitcoin: Unlocking Digital Cryptocurrencies.

O’Reilly Media, Sebastapol, CA.

A. Augustin, J. Yi, T. Clausen, and WWm. Townsley. 2016. A Study of LoRa: Long

Range & Low Power Networks for the Internet of Things. Sensors 16, 9 (2016),

[4

=

72

Kale Yuzik and Dwight Makaroff

1-18. Article 1466.

[5] J.P. Aumasson, S. Fischer, S. Khazaei, W. Meier, and C. Rechberger. 2008. New
features of Latin dances: Analysis of Salsa, ChaCha, and Rumba. In Fast Software
Encryption, Vol. 5086 LNCS. Springer, Lausanne, Switzerland, 470-488.

[6] Daniel J. Bernstein. 2004. Cache-timing attacks on AES.

[7] Daniel J. Bernstein. 2008. ChaCha, a variant of Salsa20. https://cr.yp.to/chacha/
chacha-20080128.pdf

[8] Daniel J. Bernstein. 2008. Extending the Salsa20 nonce. https://cr.yp.to/snuffle/
xsalsa-20110204.pdf

[9] Daniel J. Bernstein. 2008. The Salsa20 Family of Stream Ciphers. Springer Berlin

Heidelberg, Berlin, Heidelberg, 84-97.

K. Biswas and V. Muthukkumarasamy. 2016. Securing Smart Cities Using

Blockchain Technology. In 2016 18th International Conference on High Performance

Computing and Communications; 14th International Conference on Smart City;

2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS).

IEEE, Sydney, Australia, 1392-1393.

Vitalik Buterin. 2014. A next-generation smart contract and decentralized appli-

cation platform. (2014), 36 pages. White Paper.

Cisco Systems Inc. 2020. Cisco Annual Internet Report (2018-2023) White Pa-

per. https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/

annual-internet-report/white-paper-c11-741490.html

Stefano De Angelis, Leonardo Aniello, Roberto Baldoni, Federico Lombardi,

Andrea Margheri, and Vladimiro Sassone. 2018. PBFT vs Proof-of-Authority:

Applying the CAP Theorem to Permissioned Blockchain. In Italian Conference

on Cyber Security. CINI, Milan, Italy, 1-11.

A. Dorri, S. S. Kanhere, and R. Jurdak. 2017. Towards an Optimized BlockChain

for IoT. In 2nd International Conference on Internet-of-Things Design and Imple-

mentation (IocTDI). IEEE/ACM, Pittsburgh, PA, 173-178.

Cynthia Dwork and Moni Naor. 1993. Pricing via Processing or Combatting

Junk Mail. In Advances in Cryptology — CRYPTO’ 92. Springer Berlin Heidelberg,

Berlin, Heidelberg, 139-147.

Seth Gilbert and Nancy Lynch. 2002. Brewer’s Conjecture and the Feasibility of

Consistent, Available, Partition-Tolerant Web Services. SIGACT News 33, 2 (June

2002), 51-59.

J. Hoffstein, J. Pipher, and J.H. Silverman. 2014. An Introduction to Mathematical

Cryptography. Springer New York, New York, NY.

Sunghyuck Hong. 2017. Secure and light IoT protocol (SLIP) for anti-hacking.

Journal of Computer Virology and Hacking Techniques 13, 4 (01 Nov. 2017), 241—

247.

Seyoung Huh, Sangrae Cho, and Soohyung Kim. 2017. Managing IoT devices

using blockchain platform. In 2017 19th International Conference on Advanced

Communication Technology (ICACT). IEEE, Phoenix Park, PyeongChang, South

Korea, 464-467.

K. Lauter. 2004. The advantages of elliptic curve cryptography for wireless

security. IEEE Wireless Communications 11, 1 (2004), 62-67.

Jun Lin, Zhiqi Shen, and Chunyan Miao. 2017. Using Blockchain Technology to

Build Trust in Sharing LoRaWAN IoT. In Proceedings of the 2nd International Con-

ference on Crowd Science and Engineering. Association for Computing Machinery,

Beijing, China, 38-43.

Kerry Maletsky. 2015. RSA vs ECC comparison for embedded systems. (2015),

4 pages.

Daniel Minoli and Benedict Occhiogrosso. 2018. Blockchain mechanisms for IoT

security. Internet of Things 1-2 (2018), 1-13.

Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System.

National Institute of Standards and Technology. 2001. FIPS PUB 197: Announcing

the ADVANCED ENCRYPTION STANDARD (AES). National Institute of Standards

and Technology, Gaithersburg, MD.

K. R. Ozyilmaz and A. Yurdakul. 2019. Designing a Blockchain-Based IoT With

Ethereum, Swarm, and LoRa: The Software Solution to Create High Availability

With Minimal Security Risks. IEEE Consumer Electronics Magazine 8, 2 (March

2019), 28-34.

Phillip Sparks. 2017. White Paper: The route to a trillion de-

vices. https://community.arm.com/iot/b/internet- of-things/posts/

white-paper-the-route-to-a-trillion-devices

US Food and Drug Administration. 2017. Cybersecurity vulnerabilities identified

in St. Jude Medical’s implantable cardiac devices and Merlin@ home transmit-

ter: FDA safety communication. https://www.fda.gov/MedicalDevices/Safety/

AlertsandNotices/ucm535843.htm

Vivek Vishnumurthy, Sangeeth Chandrakumar, and Emin Gun Sirer. 2003. Karma:

A secure economic framework for peer-to-peer resource sharing. In Workshop on

Economics of Peer-to-peer Systems. Berkeley School of Information, Berkeley, CA,

1-6.

S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han, and F. Wang. 2019. Blockchain-

Enabled Smart Contracts: Architecture, Applications, and Future Trends. IEEE

Transactions on Systems, Man, and Cybernetics: Systems 49, 11 (2019), 2266-2277.

Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction

ledger. (Oct. 2014), 32 pages. https://ethereum.github.io/yellowpaper/paper.pdf.

[11

(12]

[13

[14

[15

[16

(17]

[18

=
X2

[20]

[21]

[27]

[28

[29

[30

[31

https://cr.yp.to/chacha/chacha-20080128.pdf
https://cr.yp.to/chacha/chacha-20080128.pdf
https://cr.yp.to/snuffle/xsalsa-20110204.pdf
https://cr.yp.to/snuffle/xsalsa-20110204.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://community.arm.com/iot/b/internet-of-things/posts/white-paper-the-route-to-a-trillion-devices
https://community.arm.com/iot/b/internet-of-things/posts/white-paper-the-route-to-a-trillion-devices
https://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm535843.htm
https://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm535843.htm

A Survey of Security Vulnerabilities in Ethereum Smart
Contracts

Noama Fatima Samreen, Manar H. Alalfi
noama.samreen,manar.alalfi@ryerson.ca
Department of Computer Science, Ryerson University
Toronto, ON, Canada

ABSTRACT

Ethereum Smart Contracts based on Blockchain Technology (BT)
enables monetary transactions among peers on a blockchain net-
work independent of a central authorizing agency. Ethereum Smart
Contracts are programs that are deployed as decentralized appli-
cations, having the building blocks of the blockchain consensus
protocol. This enables consumers to make agreements in a trans-
parent and conflict-free environment. However, there exists some
security vulnerabilities within these smart contracts that are a po-
tential threat to the applications and their consumers and have
shown in the past to cause huge financial losses. In this study, we
review the existing literature and broadly classify the BT applica-
tions. As Ethereum smart contracts find their application mostly
in e-commerce applications, we believe these are more commonly
vulnerable to attacks. In these smart contracts, we mainly focus
on identifying vulnerabilities that programmers and users of smart
contracts must avoid. This paper aims at explaining eight vulnera-
bilities that are specific to the application level of BT by analyzing
the past exploitation case scenarios of these security vulnerabilities.
We also review some of the available tools and applications that
detect these vulnerabilities in terms of their approach and effec-
tiveness. We also investigated the availability of detection tools
for identifying these security vulnerabilities and lack thereof to
identify some of them.

CCS CONCEPTS

« Security and privacy — Software and application security;
Cryptography; Vulnerability management.

KEYWORDS

blockchain, ethereum, smart contracts

1 INTRODUCTION

Attributing to the wide range applicability of Blockchain Techhnol-
ogy(BT), it has been finding popularity in many domains. Bitcoin
was the first version of cryptocurrency applied using BT [6] and has
since been used in many other applications such as e-commerce,
trade and commerce, production and manufacturing, banking, and
gaming. BT uses a peer-to-peer (peers are known as miners in
BT) framework which is a more decentralized approach to storing

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CASCON’20, November 10 - 13 2020, Toronto, Canada

© 2020 Copyright held by the owner/author(s).

73

transactions and data registers. As there is no single point of failure
or a third-party centralized control of transactions, BT has been
standing out from cryptocurrency-based other technologies. It uses
a chain of blocks in which each block is locked cryptographically
using the hash of the previous block it is linked to, which creates
an immutable database of all transactions stored as a digital ledger,
and it cannot be changed without affecting all the blocks linked
together in the chain [14]. However, recent research to identify the
existence of security vulnerabilities in Ethereum Smart Contracts
have shown that many applications have been exposed to attacks
because of vulnerabilities found in application level of Ethereum
Smart Contracts [18].

Ethereum Smart Contracts are typically written in Solidity Lan-
guage and this paper presents a classification for vulnerabilities in
these Solidity-based Ethereum Smart Contracts. Our methodology
can be characterized as targeting security from three perspectives:
vulnerabilities, exploitation case studies, and preventive techniques.
For each vulnerability, we discuss, among other things, its research
statistics (i.e., detection tools available to identify the vulnerabil-
ity, analysis method most preferred by researchers to identify the
vulnerability). For each exploitation case, we discuss, among other
things, the vulnerability exploited, tactic, and financial losses in-
curred in terms of ether. For each preventive technique, we discuss
its mechanism and the vulnerability it aims to protect from exploita-
tion. We aim to provide future research directions by providing
statistics of research done on each vulnerability to address the
severity of a vulnerability and the requirement of further work on
open problems.

We identify eight application level security vulnerabilities and
classify them according to the NIST’s Bugs Framework [11]. To
do so, we collected information from the NIST’s website to match
the descriptions of existing bug classes with the Ethereum Smart
Contracts security vulnerabilities discussed. As highlighted in Ta-
ble[1], most of these vulnerabilities are classified as Not Available
(NA) concerning NIST-BF classification. This is because most of
these vulnerabilities are specific to developmental methodology of
a Solidity based Ethereum Smart Contract and BT and do not match
an exact Bugs Framework (BF) category outlined by NIST. This clas-
sification concerning NIST categorization of software bugs will aim
at a better understanding of the nature of each of the Ethereum
Smart Contract’s application level security vulnerabilities.

2 BACKGROUND

2.1 Blockchain Technology (BT)
Based on the industry they target, BT applications can be broadly

classified into three categories: Public Blockchain 1.0, Public Blockchain

2.0 and Private Blockchain 3.0.

CASCON’20, November 10 - 13 2020, Toronto, Canada

e Public Blockchain 1.0 is used predominantly in the finance
industry for digital payments and currency transfers.

e Public Blockchain 2.0 is used in the e-commerce industry

and it includes Ethereum Smart Contracts, such applica-
tions process financial contracts intelligently and provide a
foundation for digital asset ownership. As Ethereum smart
contracts find their application mostly in e-commerce appli-
cations, we believe these are more commonly vulnerable to
attacks caused by simple coding errors.
In this paper, we mainly focus on identifying vulnerabilities
in these smart contracts that programmers and users of smart
contracts must avoid. Case studies outline that Ethereum
smart contracts are vulnerable to simple coding errors such
as re-entrance (recursive calling of functions: A calling B
while B is calling A), wrong constructor name, typecasts,
unintended function exposure, stack overflow, etc. as this
generation of BT is public and distributed. These coding
errors can aid an attacker in manipulating transactions to
successfully launch an intrusion attack by techniques such as
publishing malicious contract on the BT network to receive
more transactions than it sends out thereby collecting Ether
(digital asset bearer or a token by which applications are
processed on an Ethereum network) many times over within
a single transaction, exploiting the visibility modifiers to
misuse function delegation etc.

e Private Blockchain 3.0 is used in the government, health,
science industries and are hence considered private.

2.2 NIST Bugs Framework

In this paper, we leverage the National Institute of Standards and
Technologies Bugs (NIST’S) Framework to provide another classifi-
cation of these vulnerabilities to provide a basis of comparison with
other common software bugs reported by NIST[11]. This categoriza-
tion by NIST is an effort to accurately describe a commonly occur-
ring software bug and it incorporates definitions and attributes of
each software bug class along with their causes and consequences.
This classification provides researchers and developers to match
vulnerabilities in new technologies to the previously researched
bugs and adopt appropriate preventive techniques.

2.3 Analysis Methodologies

Literature review of the selected Smart Contracts vulnerabilities
detection tools/frameworks for this paper shows that these tool-
s/frameworks adopted one of the following methods of smart con-
tract analysis,

2.3.1 Static Analysis.

(1) Symbolic Execution - The execution of code using symbols
rather than real values for the variables. This analysis results
in algebraic terms of operating these symbols and the con-
ditional statements in the program result in propositional
formulas that direct the flow of execution. The feasibility of
a path of flow is determining if the conjunction of formulas
on the path is satisfied.

CFG (Control Flow Graph) Construction - The representation
of a program in a directed graph. An edge of this graph

@

74

Noama Fatima Samreen, Manar H. Alalfi

represents the flow of execution with conditions mentioned
on the edge as a label.

Pattern Recognition - The classification of a program’s basics
units or data depending on the prior knowledge or statistical
information gained from patterns.

Rule-based Analysis - The checking/analyzing of code against
a rule-based specification of its behaviour. The rule-based
specification describes scenarios during execution and en-
forces constraints on the sequence of operations and data
inputs.

De-compilation Analysis - The representation of Ethereum
Virtual Machine (EVM) bytecode with a higher abstraction
level to improve the parsing of the code and data flow analy-
sis.

—
N
=

232
(1

Dynamic Analysis.

~

Execution Trace at Run time - Tracing the sequence of in-
structions that are executed during a particular run of the
code

Fuzzing Input Generation - Fuzzing is an automated analysis
method that tests program execution by providing structured
data as inputs to a computer program. The program under
analysis is then monitored for unexpected behaviour such
as unusual code path, or crashes.

3 RELATED WORK

We conducted a literature review and we inferred that there is a lack
of a comprehensive study of these security vulnerabilities in Solidity
based Ethereum Smart Contracts. A survey of vulnerabilities by L.
Luu et al. [26] focuses only on the security vulnerabilities that exist
in the Ethereum Smart Contracts without providing a detailed study
of their exploitation cases or preventive techniques. Another study
by N. Atzei et al. [15] discusses security vulnerabilities and some
of their real world attack scenarios in general without providing a
mapping between the vulnerabilities and the attacks. Then there is
a survey of the current research available in the field of ethereum
smart contract by Alharby and Moorsel. [13] that characterizes
the surveys available depending on their nature of survey as the
surveys identifying codifying issues, security issues, privacy issues,
and performance issues. One of the most recent surveys in this area
is by Praitheeshan et al. [27] which lists 13 security vulnerabilities
(involving application level, BT level and Ethereum Virtual Machine-
EVM level security vulnerabilities) in Ethereum Smart Contracts
but maps them to only four major attacks scenarios. Therefore, it
fails to give an example pattern or a real world exploitation case
scenario for each of the security vulnerability discussed.

On the other hand, there has been extensive development of au-
tomated tools in the industry to detect these vulnerabilities. These
developers utilize the research available in this area to produce
highly efficient state-of-the-art tools to detect these vulnerabilities.
Some of the research work in developing automated tools for detect-
ing these vulnerabilities focuses on detecting only a specific type
of vulnerability without analyzing the vulnerability in detail with
its exploitation cases and preventive techniques. [25],[4], [23] One
such recent tool is ETHPLOIT by Q. Zhang et al. [33] to automati-
cally detect vulnerabilities that have been exploited in Ethereum
smart contracts. This tool adopts light-weight techniques to answer

A Survey of Security Vulnerabilities in Ethereum Smart Contracts

the problems of previously developed tools. These problems con-
sisted of unsolvable constraints and Blockchain effects. It is claimed
by Q. Zhang et al. [33] that this tool achieves precise and efficient
smart contract analysis and successfully detects more exploits than
previous exploit generation tools.

However, a new research paper SMARTSHIELD by Y. Zhang et al.
[34] utilizes EVM bytecode analysis and provides an automatic cor-
rection mechanism to avoid vulnerable patterns in Ethereum smart
contracts. It does this rectification by extracting EVM bytecode level
semantic data to transform the vulnerable smart contracts into se-
cure ones. And then, there are also some surveys like the one by
Angelo and Salzer [17] that compare only the detection tools avail-
able in the market without actually discussing the characteristics
of the vulnerabilities these tools excel or fail at detecting.

One of the most recent surveys published in Feb. 2020 by Durieux
et al. covers three research questions regarding these automated
tools available in the market. This research work by Durieux et
al. questions the effectiveness of these tools in terms of precision
in detecting these vulnerabilities in Ethereum Smart Contracts.
Durieux et al. next articulates about the quantitative analysis of the
vulnerabilities present in the Ethereum blockchain main network.

Different from the existing surveys discussed above, our paper
aims to particularly analyse the vulnerability pattern, their real
world exploitation cases, their preventive techniques and the de-
tection methods adopted by currently available tools for analyzing
ethereum smart contracts. We highlight the need for a comprehen-
sive study on the security analysis methods of vulnerable smart
contracts on the Ethereum platform. Furthermore, this paper is dif-
ferent from the existing ethereum smart contracts surveys because
we investigate each security vulnerability in detail along with the
available detection tools to analyse the security vulnerability and
the methodology adopted by these detection tools to identify this
vulnerability in ethereum smart contracts.

4 VULNERABILITIES

This paper combines the identification and analysis of eight of the
application level security vulnerabilities along with their real-world
exploitation cases to better capture the vulnerabilities scenarios
in Solidity-based Ethereum Smart Contracts. Table[1] shows the
vulnerable contracts used in exploitation cases, their preventive
techniques respectively along with the matching NIST bug class
for each vulnerability.

4.1 Reentrancy

A reentrancy attack can drain a smart contract of its ether, can aid
an intrusion into the contract code. When an external call function
to another untrustworthy contract is made and an attacker gains
control of this untrustworthy contract, they can make a recursive
call back to the original function, unexpectedly repeating transac-
tions that would have otherwise not run, and eventually consume
all the gas.

Exploitation Case of Reentrancy Vulnerability - The DAO Attack. The
Decentralized Autonomous Organization (known as the DAO) was
initiated in May 2016 as a venture capital fund for the crypto and
decentralized space[14]. During the creation period of the DAO,
anyone could send Ether to a unique wallet address in exchange for

75

CASCON’20, November 10 - 13 2020, Toronto, Canada

DAO tokens. Anyone with DAO tokens could vote on the pitch and
receive rewards in return if the projects turned a profit. However,
on June 17, 2016, a hacker was able to attack this Smart contract by
exploiting a vulnerability in the code that allowed him to transfer
funds from the DAO. As reported by M. Saad et al.[29] approxi-
mately, 3.6 million Ether was stolen, the equivalent of USD 70M
at the time. The reentrancy vulnerability exploitation in the DAO
attack(as shown in Listing 1) was accomplished in four steps,
e The Attacker initiates a transaction by calling withdraw
function of Victim;
o The Victim transfers the money and calls the fallback func-
tion of the Attacker;
o The fallback function recursively calls the withdraw function
again, i.e., Reentrancy;
e Within an iteration bound, extra ether will be transferred
multiple times to the Attacker.

1 contract Victim {

2 bool etherTransferred = false;

3 //Attacker calls the withdraw() function to initiate
the attack

4 function withdraw () {

5 //Victim transfers ether which invokes the fallback

function of the attacker

6 if (etherTransferred ||
7 !msg.sender. call.value (1)
8 etherTransferred = true;
9 1
contract Attacker {

uint count = 0;

function () payable{

if (++count < 10) Victim (msg.sender).withdraw () ;

1}
Listing 1: Simplified DAO Attack - Reentrancy Vulnerability

()) throw;

Preventive Techniques. Reentrancy vulnerability can be prevented
by ensuring that state changing logic is committed before ether is
sent out of the contract through an external call. It is also a good
coding practice to put any logic that performs external calls to
unknown addresses at the last operation in a program’s execution.
This is known as the checks-effects-interactions pattern. Another
technique is to use a mutex by adding a state variable which locks
the contract during code execution, thus preventing re-entrant
function calls.

4.2 Out-of-Gas exception

The primitive function send may cause an unexpected out-of-gas
exception when transferring ether among contracts. There is a
prefixed units of gas available to allow execution of a limited set
of bytecode instructions and the call function will end up in an
out-of-gas exception if not enough gas units are available.

Exploitation Case of Out-of-Gas Exception Vulnerability - King Of
Ether Throne Attack. The King of the Ether Throne contract ("KotET
contract") is a game, where players compete to become the king
by paying some ether as the claim price to the current king plus
some fees to the contract owner [14]. After the contract declares a
new King of the Ether Throne, the new claim price for the throne
goes up by 50%. When the KotET contract sent ether to the new
King aspirant, it inadvertently included 2300 gas with the payment.

CASCON’20, November 10 - 13 2020, Toronto, Canada

Noama Fatima Samreen, Manar H. Alalfi

Table 1: Smart contract vulnerabilities, their preventive techniques and their NIST bug classification;NIST-BF - National In-
stitute of Standards and Technology- Bugs Framework; NA - Not Available, UCE - Unchecked Error, ARC - Arithmetic or

Conversion Fault

S.no.| Contract Name Vulnerability Vulnerability Level NIST-BF Class Preventive Technique
1. The DAO Re-entrancy(recursive-calling | Security NA Placing external call logic as the
vulnerability: A calling B last piece of code in a program
calling A)
King of the ether Out-of-Gas Exception Handling | Functional NA use transfer() instead of send()
Governmental (Ponzi | Unpredictable state due to mis- | Security/Functional NA Updating Solidity Language to
Scheme) handled exceptions handle exceptions in a uniform
manner is required
4. Second Parity MultiSig | Call-to-Unknown vulnerability | Security UCE Making stateless libraries of vul-
Wallet nerable contracts to avoid exter-
nal state changing of the con-
tract
5. Reentrancy Honey Pot | Typecast vulnerability Developmental NA Using new to create an instance
of referenced contract
6. Odd and Even Game Weak Field Modifiers vulnera- | Developmental NA Using internal to protect infor-
bility mation leakage
7. Proof of Weak Hands | Integer Underflow/Overflow | Arithmetic or Conver- | ARC Using mathematical libraries in-
Coin (PoWHC) vulnerability sion Fault stead of the standard math op-
erations (addition, subtraction
and multiplication)
8. HYIP DoS by external call vulnerabil- | Unchecked Error Class | UCE Asking recipient to pull funds
ity out rather than sender using
push to send out the funds.
Removing dependence of condi-
tional statements or iterational
statements on an external call.

As this was not enough gas to successfully process the payment
and declare a new king, the wallet contract failed. This failure
resulted in the ether being returned to the KotET contract. The
KotET continued processing, thereby making the caller King despite
the compensation payment not having been sent to the previous
king (see listing 2).

1 contract KoEth {

2 address public king;

3 uint public claimPrize= 100;
4 address owner;

5 function KoEth () {

6 owner = msg.sender;
7 function () payable {
8 if (msg.value < claimPrize) throw;
9

king = msg.sender;}

uint compensation = calculateCompensation () ;
10 //"send" fails if the fallback function of
reciever is expensive
11 king . send (compensation) ;
12 king = msg.sender;
13 claimPrize = calculateNewPrice(); }

14 }

Listing 2: Simplified Vulnerable King of Ether Attack - Out-
Of-Gas Exception Vulnerability

Preventive Technique. This vulnerability can be prevented by using
transfer() function instead of send() as the former will revert the
local transactions if the external transaction reverts. However, if
send() is required then the return value of this function needs to

76

be monitored. Another technique is to adopt a withdrawal pat-
tern, wherein, each user is required to call an isolated function
that manages ether transactions and does not affect the rest of the
contract execution. Therefore, making the transaction management
independent of the consequences of failed send() transactions.

4.3 Call to the unknown

When a function invocation or an ether transfer unexpectedly in-
vokes the fallback function of the callee/recipient. Some of the
primitives of Solidity language that causes this are:

e call used to invoke a function or transfer ether

e send, used to transfer ether from the running contract to
some other contract

o delegatecall, used to invoke a function or transfer ether in
the caller environment

o direct call (see listing 3)

1 contract Alice{ function ping(uint) { returns (uint); }}
2 contract Bob{ function pong (Alice c¢) { c.ping (42); }}

Listing 3: Call to the unknown - Direct Call

If an invoked function’s signature does not match with any
existing function, then the call results in a call to recipient’s fallback
function.

Exploitation Case of Call-to-Unknown Vulnerability - Second Parity
MultiSig Wallet Attack. On July 19, 2017, a major attack, in terms of

A Survey of Security Vulnerabilities in Ethereum Smart Contracts

Ether stolen, on the Ethereum network took place. The attacker’s
account had drained 153,037 ETH from three high-profile multi-
signature contracts used to store funds from past token sales [5].
The vulnerable MultiSig wallet was divided into two contracts(as
shown in Listing 4) to reduce the size of each wallet and save gas:

e A library contract called “WalletLibrary”,
e An actual “Wallet” contract

To begin with, the vulnerable contract had a simple constructor
that delegates the initialization of the contract’s state to WalletLi-
brary, followed by a withdraw() function which also delegates its
execution to WalletLibrary. Using these two functions, the attacker
initiated two transactions to each of the vulnerable contracts: the
first to obtain exclusive ownership of the MultiSig, and the second
to transfer all of its funds to itself. To obtain the ownership of the
contract, the attacker needs to execute Wallet.initWallet(attacker).
This triggers the Wallet’s fallback function. In the Wallet’s fallback
function then initiates the delegatecall in the WalletLibrary. When
WalletLibrary receives the call, it finds that it’s initWallet function
matches the function selector and runs initWallet(attacker). Thereby
making the attacker the owner of the wallet and allowing him to
be able to withdraw funds.
contract WalletLibrary {
address owner;
function initWallet(address _owner) {
owner
function changeOwner(address _new_owner) external {
if (msg.sender owner) {
owner _new_owner;}}
function () payable { // receive money}
function withdraw (uint amount) external returns (
bool success) {
if (msg.sender == owner) {
return owner.send(amount) ;}
else {
return false ;}}}

Listing 4: Simplified Vulnerable MultiSig Wallet [5]

_owner;

1
2
3
4
5
6
7
8
9

1C
11
12
13

Preventive Technique. Solidity has provision for implementing li-
brary contracts by using the keyword library (see [9]). These library
contracts are stateless and non-self-destructive. Forcing libraries to
be stateless mitigates attacks whereby attackers modify the state
of the library directly to affect the contracts that depend on the
library’s code. Therefore, when using call, DelegateCall, the call-
to-the-unknown attack that may change the state of the victim
contract can be prevented by building stateless libraries.

4.4 Typecasts

The fact that the Solidity compiler can detect some type errors
may cause the programmers to believe that it also checks for the
address of the contract being called and the interface declared by
the caller function matches callee’s actual interface. The execution
of a contract in the presence of such type mismatch errors will not
throw exceptions at run-time and the caller is unaware of the error
resulting in three different cases at run-time:

e Incorrect contract address of callee function, the call returns
without executing any code,

e Contact address of callee function matches with any other
function’s signature, then that function is executed

77

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1

NN U R W N

CASCON’20, November 10 - 13 2020, Toronto, Canada

o Contact address of callee function does not match with any
function’s signature, then its fallback is executed.

Exploitation Case of Typecasts Vulnerability - Reentrancy honey-
Pot Attack. Honey pot contracts are deployed on the Ethereum
main network to capture Ethereum hackers who try to exploit the
contracts. A small scale attack using the typecasts vulnerability was
successfully launched on a honey pot developed to capture hackers
trying to exploit the reentrancy vulnerabilities in smart contracts
(see listing 5) In listing 5, this vulnerability can be exploited by
replacing an expected contract address with a malicious address in
the constructor.

contract Bank_Contract{
mapping (address => uint) public balances;
uint public MinDeposit = 1;
function Bank_Contract(address _sender){
//update malicious address here

}
function sendDeposit() public payable{
if (msg.value >= MinDeposit) {
balances [msg.sender] += msg.value;
1
function withdraw (uint _am){
if (_am <= balances[msg.sender]) {
if (msg.sender. call.value(_am) ()) {
balances [msg.sender] —= _am; }}}
function () public payable {}}
Listing 5: Reentrancy Honey Pot Contract - Typecasts
vulnerability

Preventive Technique. To prevent typecasting to malicious contract,
the new keyword can be used. This way an instance of the refer-
enced contract cannot be changed without modifying the contract
as this is created at deployment time. In listing 6, the constructor
could be written like:

constructor () {referenceContract new reference (); }

Listing 6: Using new to create an instance of a contract

Another technique is to hard code any external contract addresses
in the contract to avoid malicious contracts getting referenced.

4.5

There are many situations when an exception can be raised in
Solidity but the way these exceptions are handled is not always
the same. The exception handling is based on the interaction be-
tween contracts. This makes the contracts vulnerable to attacks
because programmers will be unaware of any ether that is lost if
these exceptions are not handled properly and the transactions are
reverted.

Mishandled Exceptions

contract Alice {
function ping(uint) {
// this function throws an exception
returns (uint) ;}}
contract Bob {
uint x=0;
function pong(Alice c¢){ x=1; c.ping(42); x=2;} }
Listing 7: function ping of contract Alice throws an

exception

CASCON’20, November 10 - 13 2020, Toronto, Canada

In Listing 7, the value of variable x after the execution of contract
Bob varies depending on the method of the function call. If the
ping function of contract Alice is called using a direct call, then the
value of x will be 0. Whereas, if the same function is called using
the in-built function call of Solidity, then the value of x will be 2.
Moreover, in case of exceptions, if no bound is specified then all
the available gas is lost.

Exploitation Case of Mishandled Exceptions Vulnerability - Gov-
ernmental scheme Attack. (as shown in Listing 8) In this attack, a
contract that implements a flawed Ponzi scheme is targeted [14].
This attack is executed by exploiting the mishandled exceptions
vulnerability in smart contracts. This scheme requires a participant
to send a certain amount of ether to the scheme contract. If no one
joins the scheme for 12 hours, the owner of the contract keeps his
fee and transfers the remaining ether to the last participant. To join
the scheme, a player must invest at least half of the claim prize.
This claim prize increases upon each new investment. Anyone can
invoke resetInvestment, which transfers the claim prize (half of the
invested total) to the last participant and sends the remaining ether
to the contract owner. There is a key assumption in this contract
that players are either users or contracts with empty fallback, and
so will not cause an out-of-gas exception during send (as shown in
Listing[8]

contract Governmental {
address public owner;
address public lastInvestor;
uint public claimPrize= 1;
function Governmental () {

owner msg. sender ;
if (msg.value < 1) throw; }
function invest () {
if (msg.value < claimPrize/2) throw;
lastInvestor msg. sender ;
claimPrize += msg.value/2; }
function ()
lastInvestor .send(claimPrize);
//contract sends the prize money to the winner
owner.send (this.balance — 1);
// and sends the remaining ether to the owner
lastInvestor = 0;

1;}

1
2
3
4
5
6
7
8
S

10
11
12
13
14
15
16
17
18 claimPrize
19 }

Listing 8: Simplified Governmental Attack - Mishandled
Exceptions Vulnerability

resetInvestment {

Preventive Technique. One technique to avoid this vulnerability
would be to use one method of external call throughout. However,
this is not an ideal preventive technique as different variations of an
external call can be a necessity. Therefore, this vulnerability requires
an update on the Solidity Language to make the consequences of a
thrown exception uniform.

4.6 Weak Field Modifiers

Fields in smart contracts can be labelled as Public or Private. How-
ever, these attributes are not enough to protect a field’s value. This
is because the default access modifier of afield in Solidity is public.
Whenever a field’s value is changed, this change is published on
the BT chain and there is a chance that an attacker would infer the
changed value through previous hashes and new transaction hash.

78

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Noama Fatima Samreen, Manar H. Alalfi

contract OddsAndEvens {
struct Player {address addr;
Player[2] private players;
uint tot 0;
address public owner;
function OddsAndEvens () {
owner

uint number;}

msg.sender; }
function play (uint number) {
if (msg.value != 1) throw;
Player (msg.sender, number) ;

player[tot]
tot ++;
if (tot 2) winner(); }

function winner () private{
uint n players [0].number + players[1].number;
//contract sends 1.8 ether to the winner
players[n%2].addr.send (1.8);
delete players;
tot 0;}

function getProfit () {
//and sends remaining ether to the contract owner
owner.send (this. balance) ;}

}

Listing 9: Simplified Multiplayer Games Attack - Weak Field
Modifiers Vulnerability

Exploitation Case of Weak Field Modifier Vulnerability - Odd and
Even Game Attack. In this attack, a contract that implements a
simple “odds and evens” game between two players is exploited
[14]. An attacker impersonates the second player and when the
first player makes his bet, the attacker infers this by BT network
transactions. After inferring the first player’s bet value, the attacker
adjusts his bet accordingly that would guarantee his win. (as shown
in Listing [9])

Preventive Technique. To avoid this smart contract’s vulnerability,
use the internal modifier for functions instead of public.

4.7 Integer Underflow/Overflow Vulnerability

An Integer overflow/underflow occurs when an arithmetic opera-
tion is performed that requires a fixed size variable to store data
that falls outside the range of the variable’s data type. The EVM [7]
specifies data types with fixed-size for integers. Therefore, an inte-
ger variable can be represented by only a certain range of numbers.
This vulnerability may be exploited by attackers by misusing the
smart contract code and create unexpected logic flows.

Exploitation Case of Integer Underflow/Overflow Vulnerability - BEC-
Token Attack. On 22nd April 2018, there was an unusual token
transfer in an ERC20 Smart contract that prompted the contract
owners to analyse the related smart contract code. The analysis
resulted that the transfer was initiated as an “in-the-wild” attack
that exploited the arithmetic overflow vulnerability in the contract.

Preventive Technique. This vulnerability can be avoided by Using
mathematical libraries instead of the standard math operations
(addition, subtraction and multiplication).

4.8 DoS By An External Call Vulnerability

When the flow of control is transferred to an external contract, the
execution of the caller contract can fail accidentally or deliberately,

A Survey of Security Vulnerabilities in Ethereum Smart Contracts

which can cause a DoS state in the caller contract. The caller con-
tract can be in a DoS state when a transaction is reverted due to a
failure in an external call, or the callee contract deliberately causes
the transaction to be reverted to disrupt the execution of the caller
contract.

Exploitation case of DoS By An External Call - HYIP (High Yield In-
vestment Program). The contract HYIP is yet another Ponzi scheme.
This contract sends payments to lenders from funds collected via
new lenders each day. The function sendPayment() in Listing[10]
contains the DoS by an external call vulnerability. The attack pro-
ceeds as follows:

(1) The AttackerContract lends funds to the HYIP contract and
throws an exception in its fallback function.

(2) When function sendPayment() is called to pay the lenders,
the fallback function of all the lenders is invoked and and
the fall back function of this AttackerContract throws an
exception, causing a deliberate revert of the transaction and
subsequently, a DoS to contract HYIP.

1 contract HYIP {

2 Lenders[] private lender;

3 function sendPayment () {

4 for(uint i = lender.length; i > 0;) {
5 uint payment=(lenders[i].amount«/1000;

€ if (! lenders[i].addr.send(payment)) throw;
7 b

8

9

contract AttackerContract {

bool private attack = true;
10 function () payable {
11 if (attack) throw;
12 // callee fails the caller execution deliberately
}

13 H

Listing 10: Contract HYIP - Exploited for DoS by an External
Call Vulnerability

Preventive Technique. This vulnerability exists because of inade-
quate exception handling around conditional and iteration state-
ments. Placing any external calls initiated by a callee contract into
a separate transaction can help reduce the damage caused by this
vulnerability. Isolating statements with the following pattern can
help avoid this vulnerability: « an if-statement with an external
function call in the condition and a throw or a revert in the body;
- a for- or an if-statement with an external function call in the
condition. Also, by asking the recipient to pull funds out rather
than sender using push to send out funds.

5 RESEARCH ANALYSIS AND INSIGHTS

There has been extensive research going on to identify, characterize
and prevent vulnerabilities in Ethereum Smart Contracts. For this
paper, we considered the following research studies,

e Luu et al.[4] developed the Oyente analyzer that performs
symbolic execution on contract functions and identifies vul-
nerabilities based on simple patterns. According to this frame-
work, the vulnerabilities are classified into the following
groups: transaction-ordering dependent, timestamp depen-
dence, re-entrance handling, and mishandled exceptions.

79

CASCON’20, November 10 - 13 2020, Toronto, Canada

e SmartCheck [30] is a pattern-based analysis tool that uses
XPath to detect if any vulnerabilities pattern exists in a Smart
Contract. To do so, it transforms the Smart Contract into
XML representation.

e ReGuard [25] is a combined static and dynamic analysis tool
to detect reentrancy vulnerabilities in Smart-Contracts de-
veloped by Liu et al.[25]. This tool tests the Smart-Contracts
by initially transforming the Smart-Contract code into C++
and then generating fuzzing inputs to recreate Blockchain
transactions as possible attacks. Then, ReGuard performs
vulnerability detection through dynamic analysis.

e Contract Fuzzer [23] is a tool developed by Jiang et al. that
tests the Smart-Contracts for identifying vulnerabilities in
them by using the fuzzing technique. To detect the vulnera-
bilities this tool starts with an initial analysis of the interfaces
that the Smart-Contract exposes, it then randomly develops
fuzzing inputs for these interfaces and observes the execu-
tion logs of the application.

e Mythril [3] is a command-line tool in Python developed by
ConsenSys for analyzing smart contracts interactively. It
executes EVM bytecode symbolically and represents it in
the form of a CFG, with the nodes containing disassembled
code and the edges being labelled by path formulas.

e MAIAN [2] is a python based tool that uses Oyente [4] for
the detection of vulnerabilities that require multiple trans-
actions. It executes EVM bytecode symbolically and checks
for execution traces. To discard false positives, the contracts
are dynamically analyzed by deploying them on a private
blockchain and attacking them with the computed transac-
tions.

o Securify [32] uses EVM bytecode and security properties of
a smart contract as inputs. A Security property consists of
compliance and violation patterns. This tool uses the decom-
pilation analysis method and represents the code as Data Log
facts. This framework infers that if a pattern is detected, then
the code possesses the corresponding security vulnerability.

e Vandal [16] is a command-line tool written in Python which
disassembles and decompiles EVM bytecode into an inter-
mediate representation and constructs a CFG.

e Zeus [24] is a tool developed by IBM Research India. Similar
to Securify [32], this tool takes Solidity code and policies as
input. These policies are checks that specify if the code meets
a safety property expressed in the policy. Zeus converts
Solidity code into LLVM bitcode, which is then instrumented
with assertions corresponding to the policy.

o EthIR [12] is written in Python and analyzes only particular
versions of the Solidity compiler, and Go-Ethereum. This
framework transforms bytecode into an intermediate repre-
sentation compatible with a static analyzer built by the same
developers as of EthIR. This framework extends Oyente [4].
The CFG is represented as guarded rules and this rule-based
representation is then supplied as an input to the general
purpose static analyzer.

Figure[2] shows the statistics surrounding the research of in-
dividual vulnerabilities. It is evident from Figure[2] that the reen-
trancy vulnerability has been talked about the most and there has

Noama Fatima Samreen, Manar H. Alalfi

CASCON’20, November 10 - 13 2020, Toronto, Canada

None Available

3 X

1€s

f Framework/Detection Tools Available for Vulnerabilit

10n oO.

Classificati

Table 2

X X 4 X yordyyg | et
4 4 X X pRIysHews | 11
4 X X 4 [epueA | 0T
’ 4 4 X Ajmoag 6
X ’ X 4 prendoy ‘8
4 X 4 4 PayDrewg L

X X X / .
NVIVIN 9
/ X X / R ¢
4 X X 4 19ZZN,)ORIIU0D) b
/ X X s ko "
X X X s snog -
4 X X X AN | T

apod
Aj1prios Jo uonejuds TooL

apooalhq | -axday ajerpaurtajuy apo) AJIPI[OS | 93X, XBJUAS 10RIISqY | UOII9)3([/HIOMIWEL] fou's

S[00], U0T}03)3(J/SHIOMIWERI] Aq SISA[EUY I10J JLULIO] $]0RIJUO0)) LIBWI§ WNAIIY)Y Jo a8es) (q)

X 3 X X [v€] premsIremIs 1D
pPRIYSHewWS | [og] odyDirews [ee] ordmy | [pe] prorysHEWS [0€] spayorrewss | [oe] yooyowews | [og] }oayoiews | [eusa)xy ue £4q soq '8
M (ve] X ¥ ¥ [e] w4 mojg1aa0/mop [*
pRISHeWS | [0€] }o9yirewts [¥€] promysHrews [e] pdp [ve] prowsiews | ‘[vz] sz | -wpun 18y | L
X X X X X ooy
[og] dayOsrews [e€] wordwpg [og] ayorewrs | [og] yoayouews | [0€] YOUOMEWS | -TPON PRI Yeom | 9
X X X X X X X X X X 15090dAL "
[2€] Ayrmoag
X el [ee] wordwg ‘[g2] | [v€] prorysIrews X log] yoayomrews | [pe] pramysirews | “[og] oayoirews
pRIYSIreWs | [og] Yosyourews | Iezzngioenuo) | ‘[z] NVIVIN [e] A | © [gg] Agrmdag | “[og] 3odyOirews [elnrpdw | umowun-oi-reD | ¥
[og] suonjdaoxo
X X X [ez] ¥ X [og] dppoyDirews | ayoirews [gz] [2€] Agrmoag | papueysmu 03 anp
I9zZN,J}0RIIU0D) [zr]ampd | ‘[z€] Ajunoag Iozzngioenuo)) | ‘[og] yooyDlrews | 21e1s mEEu%P&:D K
¥ X ¥ ¥ ¥ ¥ X uonjdooxy puag
[or]epueA [elmrud [e]ITpAW | pafred - seD-Jo-0 | 2
[ve] premsirews | [og] yosyDirews
[og] payOrews | [og] spayorrewss | [zg] Ayrmdag
X [vel [ee] wordwg ‘[g2] | [v€] prorysSIrews fe1] | [ee] Ayrmoag | “[ez] ozzngioen | [¢] AN
pPRIYSIreWS | [0€] YooyDirewrs Iozzngoenuo) | ‘[¢z] prengoy [91] repuea | g ‘(€] AN | ‘[sz] prengay | -uo) ‘[¥] aquwakQ | ‘[¥] quakO Aouenua-ay ‘I
T
3 =
ol o
= § g m zZ g e 4
= ™ » N =2 e 3 =+ o) 8
S < g =3 ° : e [2) I
<) - = = = = =]] e
g g £ i o 5 2 > ol =
o =3] e
: 3 Z g & g 2 2 g o
= e) z 5 > g % g g
& < s e & =8 S 2
< I = =4 = 2 = = =3 -
e, = e £ 2 ‘S I g g
2 £ 3 8 2
m. g
[¢]
[9497 1€ papraoxd uoneoynaIay sisAreuy srweuiq sisA[euy onels Ajniqersuiny fou'g

SANI[IqEIdUINA I0J J[qe[IEAY S[OO], UOT}I)I([AI0MIUIEI] JO UONedyIsse) ()

80

A Survey of Security Vulnerabilities in Ethereum Smart Contracts

been almost no research related to typecasts vulnerability. However,
Figure[2] suggests that the most amount of Ether was lost due to
Parity Multisig Wallet Attack which was an exploitation of this
vulnerability that cost $150 Million worth of Ether, followed by the
DAO attack which was an exploitation of reentrancy vulnerability
that cost $70 Million worth of Ether. Literature review of the se-
lected detection tools/frameworks for this paper shows that these
tools/frameworks adopted one of the analysis methodologies men-
tioned in the background section of this paper to analyse Ethereum
Smart Contracts Figure [1] illustrates the adopted analysis method-
ology by various research frameworks and detection tools for each
vulnerability respectively.

The reentrancy vulnerability’s statistics illustrated in Figure[1]
show that most of the frameworks and detection tools Oyente [4],
Mythril [3], SmartCheck [30], Vandal [16], Securify [32], EthIR [12]
surveyed in this paper, adopted the static analysis method to detect
this vulnerability in smart contracts. Static analysis methods can
detect the existence of the pattern defined for this vulnerability,
however, defining the pattern of this vulnerability is also a chal-
lenge. The confirmation of the existence of this vulnerability can
be more accurately outlined by a successful reentrancy generat-
ing transaction from an external contract to the contract under
test. Only two of the analyzed research works, ContractFuzzer [23],
Reguard [25], utilized the combined static and dynamic analysis
method which is believed to be a better analysis methodology for
this vulnerability.

The out-of-gas due to failed send vulnerability’s statistics de-
picted in Figure[1] shows that only static analysis methods were
adopted by detection tools/frameworks to detect this vulnerability
(16], [3].

Figure[1] shows that the vulnerability caused by mishandled
exceptions where the state of a smart contract becomes unpre-
dictable was found to be identified mostly by using static analysis
SmartCheck [30], EthIR [12], Securify [32]. However, Contract-
Fuzzer [23] also successfully detects this vulnerability using the
fuzzing technique to generate multiple transaction scenarios. The
Call-to-Unknown vulnerability was found to be detected by us-
ing combined static and dynamic analysis approach by two of the
detection tools surveyed [23], [2]. (See Figure[1]) The weak field
modifiers vulnerability was addressed by only one vulnerability
detection tool [30] (See Figure[1]. The vulnerability caused due
to unchecked math or more specifically Integer underflow/over-
flow ignorance was detected by two of the detection tools [24], [3].
Whereas, none of the detection tools had an analysis method to
detect the vulnerability caused due to typecasting in Solidity.

6 CONCLUSION

This paper presents an analysis of the security vulnerabilities of
Ethereum smart contracts, real-world exploitation cases of these
vulnerabilities and their preventive techniques. Our paper targets
eight security vulnerabilities in Blockchain 2.0 applications, specifi-
cally in Ethereum Smart Contracts. The vulnerabilities discussed
are at the level of the application layer. The preventive techniques
thus require alterations at the programming level. The research
analysis and insights provided in this paper aim at directing the

81

CASCON’20, November 10 - 13 2020, Toronto, Canada

future study in this field towards the development of more robust
vulnerabilities detection tools. Our analysis is based on

o the growing academic literature on the topic,
e the discussion forums and Internet blogs of smart contracts
programmers.

ACKNOWLEDGMENTS

This work is supported in part by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

REFERENCES

[1] Accessed on 01-09-2019. Etherscan Home Page. https://etherscan.io/
[2] Accessed on 01-09-2019. MAIAN. https://github.com/MAIAN-tool/MAIAN
[3] Accessed on 01-09-2019. Mythril. https://github.com/ConsenSys/
[4] Accessed on 01-09-2019. Oyente. https://github.com/ethereum/oyente
[5] Accessed on 01-09-2019. Parity Multi-Sig Wallet Attack. https://blog.
openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
] Accessed on 01-10-2019. Bitcoin Home Page. https://bitcoin.org/
[7] Accessed on 01-10-2019. Ethereum Home Page. https://www.ethereum.org/
] Accessed on 01-10-2019. Geth Home Page. https://geth.ethereum.org/downloads/
] Accessed on 01-10-2019. Solidity Home Page. https://solidity.readthedocs.io/en/
v0.5.1/
Accessed on 01-10-2019. TXL Home Page. http://txl.ca/
Accessed on 05-09-2019. NIST Bug Framework. https://www.nist.gov/
publications/bugs-framework-bf-structured-approach-express-bugs
Elvira Albert, Pablo Gordillo, Benjamin Livshits, Albert Rubio, and Ilya Sergey.
2018. EthIR: A Framework for High-Level Analysis of Ethereum Bytecode: 16th
International Symposium, ATVA 2018, Los Angeles, CA, USA, October 7-10, 2018,
Proceedings.
M. Alharby, A. Aldweesh, and A. v. Moorsel. 2018. Blockchain-based Smart
Contracts: A Systematic Mapping Study of Academic Research (2018). In 2018
International Conference on Cloud Computing, Big Data and Blockchain (ICCBB).
Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A Survey of Attacks
on Ethereum Smart Contracts SoK. Springer-Verlag New York, Inc., New York,
NY, USA.
Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A Survey of Attacks
on Ethereum Smart Contracts SoK. In Proceedings of the 6th International Confer-
ence on Principles of Security and Trust - Volume 10204. Springer-Verlag, Berlin,
Heidelberg.
Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, Francois Gauthier, Vincent
Gramoli, Ralph Holz, and Bernhard Scholz. 2018. Vandal: A Scalable Security
Analysis Framework for Smart Contracts. CoRR abs/1809.03981 (2018).
M. di Angelo and G. Salzer. 2019. A Survey of Tools for Analyzing Ethereum
Smart Contracts.
A. Dika and M. Nowostawski. 2018. Security Vulnerabilities in Ethereum Smart
Contracts.
Wesley Dingman, Aviel Cohen, Nick Ferrara, Adam Lynch, Patrick Jasinski, Paul
Black, and Lin Deng. [n.d.]. Defects and Vulnerabilities in Smart Contracts, a
Classification using the NIST Bugs Framework. International Journal of Networked
and Distributed Computing.
Thomas Durieux, Jodo Filipe Ferreira, Rui Abreu, and Pedro Rodrigues Souza
Cruz. 2019. Empirical Review of Automated Analysis Tools on 47, 587 Ethereum
Smart Contracts. ArXiv (2019).
J. Feist, G. Grieco, and A. Groce. 2019. Slither: A Static Analysis Framework
for Smart Contracts. In 2019 IEEE/ACM 2nd International Workshop on Emerging
Trends in Software Engineering for Blockchain (WETSEB).
Huru Hasanova, Ui-jun Baek, Mu-gon Shin, Kyunghee Cho, and Myung-Sup
Kim. 2019. A survey on blockchain cybersecurity vulnerabilities and possible
countermeasures. International Journal of Network Management 29 (01 2019).
Bo Jiang, Ye Liu, and W. K. Chan. 2018. ContractFuzzer: Fuzzing Smart Contracts
for Vulnerability Detection (ASE 2018). ACM, New York, NY, USA.
Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts.
Chao Liu, Han Liu, Zhao Cao, Zhong Chen, Bangdao Chen, and Bill Roscoe. 2018.
ReGuard: finding reentrancy bugs in smart contracts. ACM.
Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (Vienna, Austria) (CCS
’16). Association for Computing Machinery, New York, NY, USA.
Purathani Praitheeshan, Lei Pan, Jiangshan Yu, Joseph Liu, and Robin Doss.
2019. Security Analysis Methods on Ethereum Smart Contract Vulnerabilities: A
Survey.

[13

[14

=
i)

[16

(17

(18]

[19

[20]

[21

[22]

[23

[24

™~
2

[26

[27

https://etherscan.io/
https://github.com/MAIAN-tool/MAIAN
https://github.com/ConsenSys/
https://github.com/ethereum/oyente
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://bitcoin.org/
https://www.ethereum.org/
https://geth.ethereum.org/downloads/
https://solidity.readthedocs.io/en/v0.5.1/
https://solidity.readthedocs.io/en/v0.5.1/
http://txl.ca/
https://www.nist.gov/publications/bugs-framework-bf-structured-approach-express-bugs
https://www.nist.gov/publications/bugs-framework-bf-structured-approach-express-bugs

CASCON’20, November 10 - 13 2020, Toronto, Canada

Noama Fatima Samreen, Manar H. Alalfi

[Analysis Method]

[Detection Tool/Framework]

[Vulnerability

Symbolic Execution

0

CFG Construction

(2]

©]

Pattern Recognition

Static Analysis

(0]

Rule-based Analysis K\

Mythril Out-Of-Gas - Failed Send
Zeus Unexpected State - Mishandled
Exceptions
Oyente

(©De-compilation Analysis

Contract Fuzzer

Integer Underflow/Overflow

[28]

[29]

[30]

[31]

—) J — J _J

(1)

2}

)

(4)

SR Reentrancy
e’ tl
0 MAIAN Call-to-Unknown
°Execution Trace at Run-time e SmartCheck Weak Field Modifiers
i}:;T;:ii: e Fuzzing Input Generation e PG
DoS by an External Contract

(9] Securify

(%) Vandal Typecasts

© SmartShield

(®) Ethploit

Figure 1: Relationship between Framework/Detection Tools Available and Vulnerabilities

$160

$140

$120

$100

Ether Lost in Millions USD

Attacks

(a) Most Severe Attack in terms of Ether lost

@
jg 12
©
2 10
)
o
S 8
L
<
2 6
B
o 4
2
i
5 '
£
< -_— 'II'
©
v
3 & & & & & & S &
o« ol 53 < S P & &S N
<& Q & & S & N
S Q & NS N © b3 &
53 O < N) N < N
N <F N 2
4 & S O NS A &
+ NG N < \CS‘A &
< & & * & G
> & D &
&% @* N & =\
&
S &5 &

Vulnerabilities

(b) Most Researched Vulnerability

Figure 2: Research Statistics of vulnerabilities

Purathani Praitheeshan, Lei Pan, Jiangshan Yu, Joseph Liu, and Robin Doss.
2019. Security Analysis Methods on Ethereum Smart Contract Vulnerabilities: A
Survey.

Muhammad Saad, Jeffrey Spaulding, Laurent Njilla, Charles A. Kamhoua, Sachin
Shetty, DaeHun Nyang, and Aziz Mohaisen. 2019. Exploring the Attack Surface
of Blockchain: A Systematic Overview. CoRR (2019).

S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko, and
Y. Alexandrov. 2018. SmartCheck: Static Analysis of Ethereum Smart Contracts.
Christof Ferreira Torres, Julian Schiitte, and Radu State. 2018. Osiris: Hunting
for Integer Bugs in Ethereum Smart Contracts. In Proceedings of the 34th Annual

10

82

[32]

(33]

(34]

Computer Security Applications Conference (San Juan, PR, USA) (ACSAC ’18).
Association for Computing Machinery, New York, NY, USA.

Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian
Biinzli, and Martin Vechev. 2018. Securify: Practical Security Analysis of Smart
Contracts.

Q. Zhang, Y. Wang, J. Li, and S. Ma. 2020. EthPloit: From Fuzzing to Efficient
Exploit Generation against Smart Contracts. In 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering (SANER).

Yuyao Zhang, Siqi Ma, Juanru Li, Kailai Li, Surya Nepal, and Dawu Gu. 2020.
SMARTSHIELD: Automatic Smart Contract Protection Made Easy.

Towards Topology Aware Pre-Emptive Job Scheduling with
Deep Reinforcement Learning

Bon Ryu Aijun An Zana Rashidi
York University York University York University
Toronto, ON Toronto, ON Toronto, ON
bonryu@eecs.yorku.ca aan@eecs.yorku.ca zrashidi@eecs.yorku.ca
Junfeng Liu Yonggang Hu
IBM Canada IBM Canada
Markham, ON Markham, ON

jfliu@ca.ibm.com

ABSTRACT

We present a topology aware Deep Reinforcement Learning (DRL)
scheduler that simultaneously chooses jobs to run and elastically
allocates resources to them for Distributed Deep Learning data
parallel jobs in a multi-GPU, multi-machine cluster. This work ad-
dresses multiple limitations in the state-of-the-art methods: 1) Not
sufficiently accounting for the bandwidth sharing between multiple
jobs running simultaneously in a cluster, 2) Using overly simply
heuristics to solve the resource allocation problem, 3) Pretending
that job speed is not affected by the topology of allocated resources
in simulation environments. This DRL method calculates unique
job speeds by taking advantage of a graph representation of the
cluster topology. This enables modeling realistic sharing of inter
and intra machine bandwidths such as QPI speed, CPU-GPU speed,
GPU-GPU speed, Infiniband card to Top-of-Rack Switch, etc. Our
neural network model is trained using the REINFORCE algorithm
which is a policy gradient method. The model outputs a multiple
softmax designed to represent an assignment table that specifies
the resource allocation of GPU’s to Jobs. Using this design we can
dynamically choose/change which GPUs to assign to which jobs
at discrete time steps. Our simulation experiments show that our
method can outperform baseline schedulers that use heuristics for
job picking and resource allocation.

CCS CONCEPTS

« Computing methodologies — Planning and scheduling; Re-
inforcement learning; Parallel computing methodologies.

KEYWORDS

GPU job scheduling, reinforcement learning, neural networks

ACM Reference Format:

Bon Ryu, Aijun An, Zana Rashidi, Junfeng Liu, and Yonggang Hu. 2020.
Towards Topology Aware Pre-Emptive Job Scheduling with Deep Reinforce-
ment Learning. In Proceedings of the 30th Annual International Conference

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CASCON 20, Nov 10-13, 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

83

yhu@ca.ibm.com

on Computer Science and Software Engineering (CASCON °20). Toronto, ON,
IBM Corp., USA, 10 pages.

1 INTRODUCTION

Job scheduling is an important part of running a computing cluster,
which could be a massively parallel supercomputing centre, a cloud
data centre, or an on-site group of servers at a university research
lab, or even possibly a small cluster of edge devices. Jobs must be
scheduled both in terms of when they should run, as well as what
resources to assign them. Colloquially, job scheduling refers to both
tasks. In this paper, scheduling a job in time will also be referred
to as job picking, and resource to job assignment will be referred
to as resource assignment or resource allocation. In this paper, we
focus on the problem of both job picking and assigning resources
to data parallel Deep Neural Network (DNN) jobs that are meant to
run on GPU-capable cloud-based data centres. In short, we present
a Deep Reinforcement Learning (DRL) method that leverages the
modeling of intra and inter machine network topology and decides
which jobs to run by elastically assigning GPU resources to them.
Most schedulers use heuristics (such as the shortest job first) for
GPU resource scheduling. Heuristic-based methods can produce
good solutions in some situations, but they often lead to a solution
far from an optimal one in many other situations. Recently, deep
reinforcement learning has been used for GPU resource scheduling
[8], which uses a DNN as the policy function for reinforcement
learning to learn a scheduler by interacting with the environment.
However, these DRL-based methods fail to consider the topology
of the resources within the cluster. Further, these schedulers usu-
ally solve the job picking problem and do not deal with resource
allocation which is crucial in order to design an effective sched-
uler. Preemption is also another issue not dealt with in schedulers
currently in use. We discuss some of these in detail below.
Currently, there exists no "intra" and "inter" machine topology
aware DRL-based scheduler that can schedule and assign resources
to multiple jobs on a multiple machine, multiple GPU cluster. This
includes most of the intra and inter machine bandwiths such as
QPI speed, CPU-GPU speed, GPU-GPU speed, Infiniband card to
Top-of-Rack Switch speeds, etc. Both the topology of resources
allocated to a job and the resulting bandwidth sharing between
multiple jobs affect the unique speeds of jobs. In other words, job
speeds and resource assignments (aka allocations) have a non-linear
relationship. Schedulers that fail to sufficiently taking into account

CASCON 20, Nov 10-13, 2020, Toronto, Canada

topology in their decision making, will fail to make optimal job
picking and resource to job assignment decisions, resulting in sub-
optimal scheduling performance. This study addresses this issue
through detailed modelling of intra and inter network topology,
bandwidth sharing, and unique job speeds. Unlike heuristic meth-
ods, DRL schedulers can in theory avoid modeling the topology
by training their policy function (modeled by a neural network
function approximator) directly on bare metal of one’s cluster, but
one loses the ability to use simulations to initialize the training of
the neural network (NN) function approximator. In fact, the model
parallelization work by [9] used DRL to train a NN scheduler on
bare metal on a single machine for single jobs at a time, but would
need time consuming re-training on bare metal if the topology or
cluster machines changes.

Another issue not thoroughly explored in literature are preemp-
tion strategies for DDL. Preemption means that resource allocation
of a running job can be changed after the job has started but not yet
completed. For example, in the no-preemption case, the resources
(i.e. GPUs) allocated to a job does not change, and a job cannot be
paused/resumed once started. In what we call partial preemption,
the number of GPUs assigned to a job can be changed during run-
time but the job is not allowed to be totally paused. In what we call
full preemption, jobs can also be paused/resumed but the number
of GPUs assigned upon resuming can be different than before the
job was paused. Full preemption allows the most elasticity of job
scheduling, and better/fuller use of resources, potentially leading
to a shorter makespan for a set/sequence of jobs.

In this study, we address both intra and inter network topology
considerations, job scheduling, and resource assignment/allocation.
We make some initial investigations into using a DNN as a full
preemption scheduler that is trained with RL, and compare this to
no-preemption heuristic baselines. To hasten the development and
investigation of DRL to solve DNN job scheduling/resource alloca-
tion problem, this work remains in a simulation environment. Still,
our initial findings compel us to believe full preemptive schedulers
could can make better/fuller use of resources than schedulers that
can only perform no preemption at all.

Our contributions are summarized as follows. We propose a rein-
forcement learning based GPU resource scheduler, called RL-TAPS
(Reinforcement Learning based Topology-Aware Preemptive Sched-
uler), that considers the topology of the underlying infrastructure.
RL-TAPS solves both the job selection and resource allocation
problems at the same time. Furthermore, our method allows for pre-
emption. Our use case in this paper is data parallel distributing deep
learning jobs across multiple GPUs in multiple machines, although
RL-TAPS can be applied to other job types with different resources.
The results from both streaming and non-streaming scenarios show
the superiority of our method compared to three baseline methods.

The paper is organized as follows: In section 2 we discuss related
work and section 3 gives a brief background in reinforcement learn-
ing and the policy gradient algorithm. In section 4 we describe our
proposed method and we report the evaluation results in section 5.
Finally we share related insights and discuss future work.

84

Bon Ryu, Aijun An, Zana Rashidi, Junfeng Liu, and Yonggang Hu

2 RELATED WORK
2.1

It is quite useful to note for context that many combinatorial opti-
mization problems have traditionally been solved by formulating
a mathematical program and using algorithmic methods such as
simplex, or branch and bound, to solve them. If mathematical pro-
gramming approaches are too slow, then a custom heuristic would
be designed. The general problem of which fraction of which re-
source to assign to which job can be formulated as a Mixed Integer
Non-Linear Programming (MINLP) problem. By constraining deci-
sion variables to be discrete (i.e we assign whole GPUs to jobs), we
can formulate an Integer Non-Linear Programming (INLP) prob-
lem. We can further relax the problem to be an Integer Linear
Programming (ILP) problem by making some big assumptions such
as pretending to know the job completion times ahead of time or
setting the number of GPUs assigned per job to be equal and fair.

Two notable recent works in literature for scheduling and as-
signing resources for data parallel, parameter server (PS) based,
Distributed Deep Learning (DDL) jobs on clusters, are Tiresias [7]
and Optimus [11]. With respect to the resource assignment prob-
lem (aka job/device placement), the authors of Tiresias first tried
to formulate an ILP program that minimized network bandwidth
usage. Even despite assuming equal resource assignment to lin-
earize the problem, their ILP solution was too slow. The authors
of Optimus merely described their resource assignment problem
as an INLP problem that minimized Job Completion Times. They
state that the problem is NP-hard, and decided instead to use a
heuristic for assigning resources to jobs. Both Tiresius and Optmius
ultimately used heuristics for both time based job scheduling and
the resource assignment. For added context, even prior to learning
of these works, we attempted to solve the general MINLP problem
with mathematical programming, but failed to find a formulation
that produced fast nor close to optimal results.

Popular cloud-based cluster computing schedulers such as Yarn
and Slurm use very simple heuristics for time based job schedul-
ing, such as DRF [5], First in First Out (FIFO), Shortest Job First
(SJF), etc., or some combination of these. They also use very simple
heuristics for resource allocation. These heuristics do not properly
consider network topology nor do they adjust resource assignment
to existing jobs to better utilize resources. We believe that heuris-
tic methods for job scheduling and resource allocation, will be
ultimately inferior to the potential benefits that DRL can provide,
namely due to the ability of DRL to solve highly non-linear and
complex problems.

Mathematical Programming vs Heuristics

2.2 DRL-based schedulers

There have been a resurgence in the study of using Neural Net-
works to solve optimization problems with the creation of pointer
networks by [14]. Vinyals et al. [14] used existing algorithmic math-
ematical programming approaches to supervise the training of their
pointer networks. More recently though, Bello et al. [1] built upon
the work of [14] by using Deep Reinforcement Learning (DRL) to
train pointer networks. Deep Reinforcement Learning (DRL) can
train a Deep Neural Network (DNN) function approximator to solve
complex non-linear decision problems without explicitly labeled
data, by instead using scalar reward signals to guide the iterative

Towards Topology Aware Pre-Emptive Job Scheduling with Deep Reinforcement Learning

training of NNs. The first known cases of using DRL for job-shop
scheduling problems, however, were by Zhang and Dietterich in
1995 and 1996 [16-18].

Some recent works have begun to use DRL for GPU resource
management [4, 8, 9]. Mao et al. [8] used a DRL policy gradient
method to choose jobs in a queue in a simple simulation environ-
ment with no network topology considerations. Their input layer
for their simple Multi Linear Percepteron (MLP) policy network
was a rectangular grid that represented the resources as contigu-
ous columns, with each row representing a discrete time snapshot.
Thanks to the simplicity of their design and availability of their
code on github, this work has become very influential to subsequent
investigations into using DRL for resource management for not just
the field of cluster scheduling but also networking. [4] was inspired
by [8] for example to pipe the input into a convolutional neural
network (CNN) to choose a job, and then subsequently use a small
NN to choose one of two heuristic placement algorithms. Both of
these works ([4, 8]) are applicable only to data parallel jobs, as is
our current work, which is also based on the work of Mao et al. [8].

Device placement/allocation for model parallelism of DL jobs is
a much more complicated problem, which has been investigated
on a single job and single machine basis by [9, 10]. Those authors
brilliantly used sequence to sequence pointer networks to take a
computation graph as input, and output a sequence of devices to
assign to the nodes of the computation graph. Perhaps in the future,
a DRL based method of automatically performing model and data
parallelism simultaneously will be developed. For the time being,
however, our current work attempts to address some of the many
unsolved issues in DRL for data parallel DDL.

3 BACKGROUND

We give a short background on reinforcement learning and the
policy gradient algorithm that will be used in the proposed method.

3.1 Reinforcement Learning

In reinforcement learning, an agent interacts with an environment
and learns to take actions such that it maximizes some performance
measure. The environment is represented via a state space and the
agent sees a state s; at each time step ¢. It then takes an action a;
based on the current state and is rewarded r; by the environment
while transitioning to the next state s;4+1. An episode is defined as
a sequence of triples of state, action, reward, ((s¢, ar, 7t))t=1..Tppars
where Tpqx is the maximum length of the episode, and is finite.

Reinforcement learning is different from other forms of learning
in that the agent has no explicit labelled data about the environment
and other variables (i.e. states, reward, action). The agent collects
data via interacting with the environment and learns optimal action
sequences through experience.

3.2 Policy Gradients

In the theoretical development of the policy gradient algorithm for
the episodic case, one first starts with the objective,

J(0) = vy (s0), 1)

where sy is the start state of an episode, 6 are the parameters of
a function my, the policy determined by the parameters. A policy

85

CASCON 20, Nov 10-13, 2020, Toronto, Canada

function r is a mapping from states S to actions A and can be de-
fined as a probability distribution over actions a given a state s.
Since the number of state and actions pairs can be very prohibi-
tively large, function approximators such as neural networks are
used to represent a policy. Thus a policy defined through a neural
network with parameters 6 is written as 7p. vy, is the performance
measure called "true value function" and is the only function that
can inform us of what actions to take (in transitioning between
states) to get the highest possible performance. Theoretically, it is
difficult if not impossible to determine v,. In practice, it is com-
mon to approximate the objective as the expected return, Ex, [G;],
where G; = [ZtT'"”x y'rs] [13, 15]. The discount factor y is set be-
tween 0 and 1 and is used to put more weight on immediate rewards
and discount later rewards. For the episodic case it is commonly
set to 1 for simplicity. The REINFORCE algorithm [15] then uses
the following update to the parameters:

@)
where we are taking the expectation over many trials and time

steps, sampled using 7rg. While we use the original formulation of
Gy, it can be tailored to the problem being solved.

0 «— 0+ aBy, [G:Vglogmg(st, ar)] ,

4 PROPOSED METHOD

In this section, we describe the problem we are solving, our pro-
posed approach to solving the problem, and the simulation envi-
ronment we train and test our proposed model.

4.1 Problem statement

Given a cluster of computers, each with one or more GPUs, and
a set of deep learning jobs including the ones that are currently
running on the cluster and the ones that were submitted and are
waiting for GPU allocation, the goal is to determine:

(1) which jobs should be chosen to run.
(2) which GPUs should be assigned to jobs chosen to run.

so that the average job slowdown among all the jobs is minimized.
A job’s slowdown is defined as the difference between its finish and
enter time, divided by its estimated time to run alone.

Note that we do not separate job selection and job allocation in
this problem definition, and consider them simultaneously so that
jobs are selected only if they can lead to an allocation that achieve
a better outcome. Also, we allow preempting the already running
jobs and elastically changing their resource allocations to improve
overall performance.

4.2 Topology Awareness

Our scheduler is topology-aware in two ways: 1) intra and inter
machine bandwidths in the cluster’s topology are modelled in detail
as part of the environment, and affect the observed reward signal;
2) the current GPU to job assignments (partially representing the
cluster topology) are presented as input to an NN policy function.
An NN input design that incorporates topology bandwidth informa-
tion is left for future work. Even without bandwidth information
directly incorporated into the input, the NN can in theory find GPU
to job assignment combinations that make better use of the cluster
topology and thus increase the reward signal.

CASCON 20, Nov 10-13, 2020, Toronto, Canada

4.3 State representation

The state S describes the status of the cluster in terms of GPU
usage and the jobs in the job queue. Assume that the cluster has a
set of X machines, {n;|i = 1..X}, with a total number of M GPUs,
G = {gi|li =1... M}. Also assume that the job queue can take up to
N jobs and each element of the queue is called a job slot. Each job
slot can hold one job, and the slots are sequentially filled up as jobs
arrive. We represent the set of N job slotsasJ = {jj|i=1...N}.

Similar to [8], we use a set of matrices to represent the state,
shown in the top part of Figure 1. Firstly, X two-dimensional matri-
ces are dedicated for the cluster representation, one matrix per
machine. Next, N two-dimensional matrices represent the N job
slots in the job queue, one matrix per job slot. Finally, there is a
matrix to represent a backlog.

The state representation in Figure 1 shows of a small cluster of
X = 4 machines (labeled n1 to n4) and a job queue with N = 3 job
slots (labelled j1 to j3). The first two job slots are occupied by a
running job. The job in the third slot is waiting. In Figure 1, the
number of columns of the matrix for machine n; is the number
of GPUs it has (e.g., n1 has 4 GPUs). The number of columns of
the matrix for a job slot j; is the maximum number GPUs a job
can request (e.g., 6 GPUs in the figure). In general, the rows of the
matrices represent the time dimension, and the columns represent
the resource dimension. Each row of the matrices is a representation
of the entire environment along the columns (cluster usage, job
resource request, etc.) during a specific discrete span of time. The
multiple rows then allows for the presence of sequential information
to be represented in the state.

The highlighted cells in the matrices representing machines
indicate that the corresponding GPUs are occupied by the current
running jobs. The highlighted columns in a matrix representing
a job slot in the queue indicate the number of GPUs requested
by the job, gpusreq(j). The time span of each row of the image is
calibrated to have a constant value in seconds (see Appendix A).
Thus if we know the amount of computation a job has left, and
its estimated speed, we can determine the number of times steps
required for this job. In a job slot, the number of highlighted rows
of a job is the number of time steps it is expected to run for if the
job is 1) running alone, 2) is allocated exactly the number of GPUs
it requests, and 3) there is zero communication time between GPUs.
In the cluster representation, the number of highlighted rows of
a job is the number of time steps left for it to complete, given its
current unique topology-dependent speed, and the calibrated time
span of the row. Job modelling is further explained in section 4.6.2.

When a job arrives at the cluster, but there are no empty job
slots, the job gets appended to the small backlog matrix (illustrated
at the right most end of the top part of Figure 1), for which a single
job is represented by a single unit.

When a job is assigned GPUs by RL-TAPS, we paint the corre-
sponding GPU columns in the cluster representation with the same
color. In our full preemptive method, RL-TAPS, jobs that arrive to
the job slots remain there as long as they are not finished. They
can be not-started, paused, or currently running. Only when the
jobs are finished are they removed. This way, currently running,
paused, and not-started jobs in the queue are all candidates for
being chosen by RL-TAPS. In contrast, in the RL simulation for

86

Bon Ryu, Aijun An, Zana Rashidi, Junfeng Liu, and Yonggang Hu

backlog

machines with GPUs
]

jobs in queue
)

%]
g]
@ []
£ i
- '
Fully ConnectedJHidden Layer(s)
Multiple Softmaxes
GPU1 ‘ GPUS8 GPU9) GPU16
i1 j2 3 @|.../j1 23 @|j1j2ij @|.|j1j2i3 @
ofofo|. .M ofofo[of@ofo]..[of@o]o

Figure 1: The architecture of the NN function approximator.
Above there are three jobs in the queue. The first two are
running, and the third is waiting. This assignment is not op-
timal but possible, depending on the level of training.

no-preemption schedulers, jobs that are chosen (and thus assigned
a static number of GPUs), are removed from their jobslot, so they
only occupy the cluster representation and are no longer candidates
for being chosen.

To simplify the "painting" of the cluster representation, we do not
stack jobs vertically in the cluster representation. In other words,
each column of the cluster representation is assigned to at most
one job. This state representation will be used as the input to the
neural network policy function.

4.4 Actions and Rewards

4.4.1 Actions, A. The NN takes multiple simultaneous actions us-
ing a multiple softmax approach. If there are M GPUs in the cluster,
there are M output softmaxes, and all softmaxes share the previ-
ous hidden layer. Each softmax, as shown in Figure 1, consists of
N + 1 units, where N is the number of job slots. The corresponding
GPU-to-job assignment table is shown on the right hand side of
Figure 2. In this study, each GPU can be assigned to at most one
job slot, or not assigned to any job slot, i.e., the null job slot @. The
decision of which job to assign a single GPU to, is done using a
single softmax. With multiple GPUs in a cluster, we have multiple
softmaxes, one per GPU. Note that if the job slot corresponding to
a currently-running job is not assigned to any GPUs, it is paused.

In this manner, we can solve the problem of choosing a job
and assigning resources to it, simultaneously. Furthermore, this
approach is naturally pre-emptive. A job that has not finished,
remains in its slot, and can be paused or resumed simply by not
assigning or assigning GPUs to it. If a job is not assigned any GPUs,
then it is not chosen. Thus, job picking and resource assignment
are performed at the same time.

4.4.2 Topology-Aware Reward, R. In RL, a scalar signal for reward
is needed to guide the training of the policy function (a neural
network in our case). It can also be helpful to subtract penalties
from the reward to discourage bad decisions. We describe exactly
how we formulate rewards and penalties. The main measure of
reward we use is computational throughput in units of FLOPS
(Floating Point Operations Per Second), which we interchangeably
refer to as speed. In general, we calculate the aggregate sum of
speeds of all jobs.

Towards Topology Aware Pre-Emptive Job Scheduling with Deep Reinforcement Learning

Job index,
j=1.N

1.M

GPU index, g

Figure 2: (Left) A rack is shown with its Top of Rack Switch
(TRS), and two of its machines. The vertical ellipsis mean
that there exists additional machines. Horizontal ellipsis on
either side mean there may exist additional racks. The dark
red arrows pointing to the DS indicate connections from two
additional TRS’s on either side. (Right) Example assignment
of GPUs 1 to 8 for job 1 and GPUs 9 to 16 for job 2.

Rather than considering the instantaneous speed of a job, we
prefer for simplicity to think about the average speed that a job
experiences while interacting with other running jobs. Since time
steps are not instantaneous but rather span two time points, it is
suitable to consider the average speed of a job. The job’s average
speed at a discrete time step contributes to the total reward for the
time step. This contribution is expressed as,

(|G|
tm(j) + 1)
where dp,) is the computational "distance” of job j per minibatch.
Le. dpy(j) = dex(jyM(j)> Where doy(;) is the computational "dis-
tance" of job j on a single example, and mjy is the minibatch size.
The computational distance is defined as the number of FLOPs
(Floating Point Operations)!. Gyj) is the subset of GPUs assigned
to job j. |Gj)| is thus the number of GPUs assigned to job j. In
the denominator, ,,) is the training time of a minibatch for job
J- rt(jy is the time it takes for a reduction operation at the end of
a minibatch such as gradient averaging across the GPUs of a job.
Since reduction time is independent of the minibatch size, but is
still characteristic of a job running in job slot j, rt(;) lacks a m
subscript.

For each time step ¢ of an episode i, we calculate a reward value
for the time step as a sum of the throughputs (equation 3) across
currently running jobs, in addition to any penalties associated with
that time step.

Rijy =0e(j) = ®3)

Ri = ZRt(j) + Penalties 4)
J
The superscript episode index, i, is omitted on the RHS of equations
3 and 4 for simplicity.
There were two main penalties designed to help aid the neural

network to train.

!We use the term distance as proxy for computation (FLOPs not FLOPS) to intuitively
use kinematic equations such as Ad = vt

87

CASCON 20, Nov 10-13, 2020, Toronto, Canada

(1) The cost of a job sitting idle in a jobslot or backlog, whose
magnitude is calculated as
dp 1y &pusreq(j
_ m(j)&P CI(I) 5)

(o
D gy + sty

where srrt ;) is called the single rack reduction time and is
an estimate of the job’s reduction time if the job running
alone on a single rack using gpusreq(j) GPUs.

(2) The cost of fewer than requested GPUs being assigned to

the job in a jobslot, whose magnitude is calculated as
C o dm(j) Lgpusreq(j) = 1G]
v tmj) + T1(j) ’

The first penalty applies to both RL-TAPS and no-preemption
methods. Without this penalty, RL-TAPS would fail to learn to
decrease slowdown by running multiple jobs simultaneously. This
is because running one job at a time with high resource usage could
also increase throughput but comes at the expense of longer idle
time for waiting jobs. The second penalty only applies to RL-TAPS
and it is necessary for training the NN to learn to assign GPUs close
to the number that is requested. Assigning more GPUs to a job than
requested can be beneficial and is counted in equation 3.

(6)

4.5 Policy Function Design and Training

We use a neural network to represent the policy function.

4.5.1 Neural Network Structure. The overall NN architecture is
shown in Figure 1. Its input, described in section 4.3, represents
the state of the environment. The input is connected to the output
using a single fully connected hidden layer. The output layer of the
NN consists of multiple softmaxes (one for each GPU), all sharing
the previous hidden layer. Each softmax represents a probability
distribution over job slots given a GPU. The bottom part of Figure 1
illustrates the output layer of the NN. Each softmax corresponds to
a decision to assign a GPU to a job slot, with the highest probability
element of the softmax corresponding to the most favoured job slot.
In addition, a GPU may not be assigned to any job slot. Thus, a null
job slot @ is used to represent such a situation.

Atagiven time step ¢, let Ag be the event that a GPU g is assigned
to one of N + 1 job slots, which corresponds to the action with the
highest probability outputted by GPU g’s softmax, p(Agls). We
use A; to represent the event that events Ag for all GPUs occur
simultaneously, that is, A; = ﬂg’i 1 Ag. Assuming independence
among Ag’s, we can use the product rule of probability to express
a single policy function as:

M
79(Ar, 1) = p(AdS:) = | | p(AglSe) ()
g=1
where S; is the given input at ¢ to the NN. Note the capitalized states,
actions, and rewards (S, A¢, Ry) signify that they are sampled using
the policy. Such a single function is needed in the policy gradient

training algorithm described below.

4.5.2 Training Algorithm. As described in the background section,
the REINFORCE algorithm is a result of direct policy differentiation
where the goal is to maximize the expected return. However, the
policy gradients suffers from high variance. This is in part alleviated

CASCON 20, Nov 10-13, 2020, Toronto, Canada

by using the "REINFORCE with baseline" algorithm, which calls for
subtracting an appropriate baseline, b; from the return:

0 < 0+ aEy, [(G: — bt)Vglog mg(st, ar)] 8)

where the choice of b; should leave the expectation of the gradient
on the RHS unchanged. The expected reward G; and baseline b;
are computed over a set of episodes generated based on a set of
training job sequences. In our training algorithm, b; is the average
of the return over multiple episodic simulations,

1&
b,:E;G;,

where i = 1..E is an index for episode. The expectation on the
RHS of equation (8) is taken simply by averaging across all job
sequences and episodes involved in calculating the gradient prior
to a parameter update.

In order to generate multiple episodes per job sequence during
training, a softmax for a GPU is treated as a probability distribution,
from which a sample is taken to determine which job to assign the
GPU to. During inference, a GPU is assigned to the job slot with
highest probability outputted by the corresponding softmax.

At each time step t of an episodes, the NN would be required to
make a decision of which GPUs to assign to which job slot, with
the option of GPUs not be assigned to any slot (i.e. the null job slot).
Then the actions are implemented by the scheduler, followed by
a calculation of the reward for the current step ¢. Then finally the
time step t is advanced by 1, and a new job can arrive for this new
time step.

We trained the policy gradient method with two kinds of training
loops. First we trained using a method akin to the usual mini-batch
gradient based training method in a static dataset scenario. This
training loop is shown in Algorithm 1. Second, we trained the NN
in a streaming data scenario.

In both scenarios, multiple sequence of jobs, representing job
arrivals, are made before running finite length episodic simulations.
Each job sequence represents an arrival of one job per time step ¢.
Each epoch involves multiple job sequences.

A single job sequence is used to generate multiple episodes. At
each step of an episode i, as usual, we calculate a cumulative dis-
counted reward, the return G;. An aggregate baseline for each time
step, by, is calculated by averaging vg across all episodes. A gradient,
A0, is accumulated across multiple job sequences, episodes, and
time steps,

There are three main differences between [8] and our study with
respect to the training algorithm. Firstly, in contrast, we test the
performance of our model on separate test scenarios. Secondly, 8]
employed epoch based learning, in which NN updates occur once
per epoch. In our work, we update the NN multiple times per epoch.
Thirdly, we additionally test the performance of our method in the
face of changing simulation data.

The training loop for minibatch style training is shown in algo-
rithm 1. Training and test job sequences are pre-made and remain
static, and thus we refer to this as the Non-Streaming training
method.

Algorithm 1 was modified in two small ways to simulate Stream-
ing Data training. Firstly, before shuffling the job sequences, one
would simply re-initialize a new set of J training job sequences

©

88

Bon Ryu, Aijun An, Zana Rashidi, Junfeng Liu, and Yonggang Hu

Algorithm 1: Minibatch Training with Static Job Se-
quences

1 Initialize network parameters 0
2 Initialize J training job sequences
3 Initialize batchsize B
4 for each epoch:
5 Shuffle training job sequences
6 for job sequencel =1..J:
for episode i = 1..E:
Generate episode sequence ((S;, A}, R}))i=1.1;

N}

o

9 for t = 1..Tinax:

10 Gll; — Zz’;‘;’x yk_tRliC

1 for t = 1..Tjax:

12 by «— %Zle ;

13 for episode i = 1..E:

14 AO «— A0+ (G} — by)Vglog ﬂé(At, S})
15 if | mod Bis 0:

16 0 «— 0+ aﬁA@

every few epochs. Secondly, a new testing job sequence was gen-
erated for every epoch. This approach was used to investigate the
potential for the NN to train with new incoming job sequences.

4.6 Simulation Environment

4.6.1 Modeling Cluster Topology. The RL scheduler is trained on
a simulated environment. A neural network designed in Theano
is used as a function approximator. All code is written in Python.
The graph representation of the cluster was modelled using the
NetworkX python package.

The main benefit of building a simulation environment is it
enables quick testing of different ideas, without having to wait for
real DL jobs to run on a cluster.

Intra and inter machine network topology is simulated by mod-
eling the cluster as a graph. We assume that each machine in the
cluster is an IBM Power8 Minsky box (model S822LC [2]), and
that the cluster can consist up to 4 racks. The main idea was to
model elements such as CPUs, GPUs, network cards and switches
as nodes in the cluster and the communication links between them
as edges. The full list of nodes modelled is shown in Table 1. Each
machine consists of 4 GPUs, 2 CPUs, and 2 Infiniband cards. Two
GPUs are connected to each CPU. This type of configuration was
described in [3], which benchmarked the use of IBM’s PowerAl
library for performing DDL on a 256 GPU cluster of IBM Power8
Minsky boxes.

The following edge weights between the nodes were modelled:
default bandwidth, run-time bandwidth, number of jobs per edge.
The node and edge types modelled are described in table 1, and
a visual representation of the nodes and edges are shown in a
graphical representation of a portion of the cluster on the left hand
side of Figure 2.

The main idea behind topology modeling is to count the number
of jobs using each edge in the graph, that is, the number of jobs per
edge. To do so, we need to keep track of the links used by GPU to
GPU pair paths. With a large number of resources, it is infeasible

Towards Topology Aware Pre-Emptive Job Scheduling with Deep Reinforcement Learning

Table 1: Nodes and Edges modelled

CPU, GPU,

Infiniband card (IBC),
Top-of-Rack Switch (TRS),
Director Switch (DS) !

CPU-CPU (38.5),
CPU-GPU(40),
CPU-IBC(1000),
IBC-TOR(12.5),
TRS-DS(6.25)

Default BW,
Run-Time BW?
Number of Jobs per Edge

Nodes

Edges (Default BW in GB/s)?

Edges Weights 3

1 Only one Director Switch was simulated.

2 BW = Bandwidth

3 Each edge has three weights

4 Run-Time BW = Default BW / Number of Jobs per Edge

to list all possible combinations of GPU-GPU assignments ahead of
time. Thus we pre-compute the shortest paths between each unique
GPU-GPU pair. During run time, for each job, we build up a set of
edges, which is the set summation of all edges in the paths of all
unique GPU-GPU pairs being used by a job. Obviously, if a job was
only assigned a single GPU, that job would not contribute to the
job count of any edge. The "Number of Jobs per Edge" edge weight
value is used in determining the effective speed of simulated jobs.
The speed of jobs become important in the reward formulation
which is described in section 4.4.2.

4.6.2 Job Modelling. As already mentioned, our job picking and
resource allocation method is meant for DNN type jobs. Here we
discuss the attributes of the simulated DNN jobs that our scheduler
tries to schedule as they arrive in our simulation, not the attributes
of the NN function approximate used in our DRL method. Symbols
representing modelled job attributes are suffixed with "(j)".

Let us assume for simplicity that the time it takes for a minibatch
of data to feed into a GPU to be negligible compared to the time it
takes for a job to complete one minibatch of computation. Further-
more, consider a job that runs on a single GPU, which has a Floating
Points Operations Per Second (FLOPS) rating of vpjg9. P100 is an
NVIDIA GPU model. Let us think about the complexity of a DNN
model, i.e. the Floating Point Operations (FLOPs not FLOPS) of
a single forward pass on a single data example, as a distance per
example, dox(j)-

The speed of a single GPU job, v;(;), at a given time step ¢
during the simulation, can be expressed as follows and is roughly
equivalent to speed of the GPU.

dm(j)

Bm(j)

(10)

Ve(j) = ~ 0.90p100

where the 0.9 on right hand side is to simulate the fact that the
actual FLOPS observed is less than the advertised FLOPS.

89

CASCON 20, Nov 10-13, 2020, Toronto, Canada

To use realistic values of attributes of DNN jobs, a table of 35
Convolutional Neural Network (CNN) architectures and their prop-
erties such as model complexity (dey(j)), gradient size (same as
the memory footprint of all model parameters), etc. were conve-
niently obtained from [12]. During job initialization, it is randomly
assigned a CNN architecture’s model complexity, and gradient size.

Also during job initialization, the training time of a job’s mini-
batch, tt,j), is obtained from equation 10, where vp;go is a con-
stant, dp,(j) = dex(j)m(j) is known because d,(; is simply the
complexity a of model as reported by [12]. m ;) is a job’s assigned
mini-batch size randomly chosen as one of {32, 64, 128, 256,512}.
Finally, borrowing from [8], we sample from uniform distributions
(see section 5.1) to assign a job a length len(j) and number of
resources (only GPUs in our case) requested by the job, gpusreq(j).

During the simulation, a job finishes once it has undergone a total
amount of computation, which we refer to as "total computational
distance":

dtot(j) = len(j) x gpusreCI(j) X deeys (11)
where len(j) and gpusreq(j) multiply to give the number of colored
cells of a job slot (see figure 1), and d,,j; is a calibrated computa-
tional distance associated with a single cell, in units of FLOPs. The
details of this calibration is included in the Appendix A. The purpose
of the calibration process is two fold. One, it ensures that the input
image can represent the entirety of the computational distance of
the job, whether that be in the queue, or in the cluster portion of the
input. Secondly, the calibration associates a time value in seconds,
tstep, With a row of the input image. Every time the simulation
advances one step, the computational distance in FLOPs each job
has "travelled" can be computed uniquely as v;(j) X tstep-

4.6.3 Reduction Time Measurement and Formulation. The reduc-
tion time of a job, rt(;) is modelled using a combination of measured
data and a heuristic. In our modeling, it is expressed as follows:

rtcjy = srrty (1+ (r = 1)/5)s) (12)
The right hand side of equation 12 consists of three terms. The
first, STTE(j),s is the single rack ring reduction time, derived from
ring reduction measurements on a single rack for up to 16 GPUs.
The second factor in parentheses is a simple heuristic to model
the increase in reduction time due to using increasing number of
racks, r. The third, s(;y is a scale factor that accounts for bandwidth
sharing. These three terms are explained in more detail below.

Single Rack Ring Reduction Time, srrt(;): Ring reduction mea-
surements were taken for up to 4 machines on a single rack, for a
total of 16 GPU’s. It was measured for 100 MB and 500 MB gradient
sizes, and the measurements are shown in Figure 3. The measure-
ments were fitted with square root functions. In order to estimate
the reduction time for different gradient sizes and GPU counts, we
interpolate linearly between the two curves by drawing a vertical
line at the desired GPU count. At 0 MB, we set the reduction time
to be 0, and for all gradient sizes greater than 100 MB, we simply
use the equation of the line between the 100 MB and 500 MB curves.
We use the two fitted curves in Figure 3 to account for different
number of GPUs allocated to a job, and interpolated between them
as explained above, to account for different gradient sizes.

CASCON 20, Nov 10-13, 2020, Toronto, Canada

500

[]

400 e 100MB

— 100 MB fit
® 500 MB
500 MB fit

300

200

100

Average Reduction Time (ms)

1z 4 6 8 10 12 14 16
Number of GPUs

Figure 3: Single Rack Reduction Time measurements

Extrapolating Reduction time for Multiple Racks: Since at the time
of measurement and data collection, reduction time measurements
between racks were not available, we model between rack reduction
times with the second term on the right hand side of 12. For example,
if we require the reduction time of using 8 GPUs on 2 racks instead
of 1 rack, we multiply the right hand side by (1 + (2 —1)/5) = 1.2.
Thus, for 2, 3, and 4 racks, this factor would be 1.2, 1.4 and 1.6
respectively.

Scale factor, S(j): Finally, the scale factor, s(j) s expressed as

limbwg; i
50) = (13)
multi(j)
where the numerator, limbwginge(;). represents the limiting band-
width of a job j if that job was running alone in the cluster. The
denominator, limbw s j), represents the limiting bandwidth of a
job j while there are multiple jobs running in the cluster. Given that
a job j is assigned a set of GPUs, let paths() be the collection of
shortest paths between unique GPU-GPU pairs among the assigned
GPUs. Further, let E() be the set of all undirected edges in paths .

limbwingle(j) and limbw ;) are defined as,

limbwginge(j) = min Default BW(e) (14)
e€E()

limbw yiri() = mén Run-time BW (e). (15)
eec

()
To help remember the meaning of limbwingje(j) and limbw i jy»
one can call them "single job limiting bandwidth" and "multiple job
limiting bandwidth", respectively.

The main reason for using the scale factor is that it is impossible
to pre-measure reduction times for the huge number of combina-
tions of GPU to job assignments. The scale factor helps account
for the difference between a job’s reduction time due to sharing
of bandwidth with other jobs during the RL simulation, versus the
reduction time the job would have if it was running alone. This is
needed since the reduction time measurements were carried out for
one reduction process at a time on a cluster of four Minksy Boxes.

5 EVALUATION

We describe specifics of the cluster topology, dimensions of the NN,
and the performance measures used for evaluation. Also, we briefly
describe the non-topology aware baseline methods of comparison.
Finally we present the results of our method.

90

Bon Ryu, Aijun An, Zana Rashidi, Junfeng Liu, and Yonggang Hu

5.1 Experimental Setup

We tested our method on a simulated cluster with a total of 8
machines on 4 racks, with 2 machines on each rack (which can be
written down as [2,2,2,2]). Each machine has 4 GPUs, thus there is
a total of 4 GPUs x 8 machines = 32 GPUs. Thus M = 32. Normally,
one would keep as many machines on the same cluster as possible.
However, as a proof of concept, we wished to investigate the effects
of topology on the performance of our method compared to the
non-topology aware baselines, while allowing a NN to train within
a reasonable amount of time.

The number of job slots we used in the input image is N = 10,
and the backlog could hold 60 jobs. The maximum gpusreq(j) was
limited to 12 per job, to limit the number of columns needed to
represent a jobslot in the input image.

The number of hidden units used for the hidden layer was set
to 1.5 times the total number of output units, rounded up. The
total number of output units is 32 X 11 = 352. Updates to the
NN parameters were done with an Adam optimizer and an initial
learning rate of 0.001.

During each episode, one job per time-step would arrive for
the first 400 consecutive time-steps. The maximum episode length,
Tinax was set to 1000. The number of episodes, E, per job sequence
was set to 20. The number of job sequences, J, was different for the
minibatch and streaming training experiments.

The length of the job, len(j), and its resource request, gpusreq(}j),
were sampled from uniform distributions. Roughly half the jobs
had len(j) between 1 and 3, and the other half between 6 and 10.
Similarly, roughly half of the jobs had gpusreq(j) between 1 and 7,
and the other half between 8 and 12.

5.1.1 Non-Streaming vs Streaming Training. For non-streaming
data training, a static set 200 training and 200 testing job sequences
were created before the start of an epoch.

For streaming data training, a fresh set of 60 training job se-
quences were used every 10 epochs. At the end of every epoch, a
fresh set of 60 testing job sequences were used for testing.

For both training scenarios, the training and testing perfor-
mances were plotted for 50 epochs, every epoch.

5.2 Performance Measures

5.2.1 Mean Reward. To display the reward across all E episodes
and J job sequences of a single epoch, the first return, Gi- of each
episode i is collected for every job sequence. Notice that the usual
formula for the first return, Gi, is already an aggregate (a discounted
sum) of all rewards of a single episode. In this paper, we refer to
Mean Reward as the mean of all Gf across all job sequences and
episodes of an epoch:

11 ;
Mean Reward = = = G. (16)

where job sequence index j is omitted in the return for simplicity.

5.2.2 Slowdown. In scheduling studies, it is also instructive to plot
the slowdown. Slowdown for a single job is defined as,

finishtime(j) — arrivaltime(}j)

Slowdown(j) = len(j) ’

17)

Towards Topology Aware Pre-Emptive Job Scheduling with Deep Reinforcement Learning

where finishtime(j) is the time step at which a job finished. If by
time step Tinqx there exists unfinished jobs, then those jobs are
assigned Tpnqax as the finish time. arrivaltime(j) is the time-step at
which a job arrives.

To associate an aggregate slowdown for an entire epoch, we
calculate the Mean Slowdown by simply taking the average job
slowdowns across all jobs that arrived during an epoch. This mean
is taken across all job sequences and all episodes of an epoch.

5.3 Evaluation baselines

To compare with baseline job picking and resource allocation meth-
ods, we used the following static schedulers from [8]: Random,
Shortest-Job-First (SJF), and Tetris. These schedulers only performed
job picking, by selecting one job at a time among the jobs in the slots.
The Random and SJF job pickers are self-explanatory. Tetris is based
on [6]. Its implementation in our environment works by picking
the job whose resource request gpusreq(j), when multiplied by the
number of available GPUs, leads to the largest value. For resource
allocation for these schedulers, the behaviour of heuristic resource
allocator from [8] was preserved. This baseline resource allocator
simply numbered the resources of a certain type consecutively,
then picked the first x resources to assign, where x is the number
resources of a certain type requested by a job. The allocator would
search for free resources in the cluster representation of the input
image from left to right starting at the top of the image. For a given
job, its resource allocations across the GPUs were required to begin
at the same time step. Although this baseline resource allocator is
not topology aware, we made sure to use the capabilities of our
simulator to calculate the unique speed of jobs scheduled by these
schedulers.

The Total Rewards and Average Slowdowns were also computed
for these baseline schedulers. The extra penalties explained in sec-
tion (4.4.2) were of course not used because they are not applicable
to static resource allocators.

5.4 Performance Results

The results of measuring Mean Reward and Mean Slowdown for the
non-streaming data and streaming data training experiments are
shown in figure 4 and 5, respectively. The figures show that mean
reward and slowdown performance of RL-TAPS is clearly better
than the baseline schedulers. The baseline schedulers performed
poorer because they do not learn to, nor even heuristically, take into
account topology. In order for an NN to take into account topology,
there must be some signal to guide it to understand that certain
values of units in the input correspond to desirable choices made by
the output. In the case of our prototype, this signal only came in the
form of a topology-sensitive reward signal and current GPU to job
assignments. To our surprise, the NN was able to learn even though
the bandwidth usages of the topology were not explicit features in
the input.

The non-streaming training method showed slightly better per-
formance than the streaming training method with respect to the
mean reward, but the performance with respect to mean slowdown
were similar. This is good news as the end goal is to first train
RL-TAPS in a simulation environment, but deploy and continue to
train in a real cluster. The big benefit of detailed topology modelling

91

CASCON 20, Nov 10-13, 2020, Toronto, Canada

Tetris test —--- Random test =~ —— RL-TAPS train
—=- SJF test —— RL-TAPS test
~700 100 AYs A A
- c \I‘/\Jl\\'l\/l [hAde Rt vk \“,‘V'\I
T -800 % 920
©
= g \
& o0 _g " /v‘\’v"\,'w"‘v'\,w/"”’\,'\'\,A_
%]
c_
© 1000 -
[} 8 70
= -1100 /v\'\'\/‘a‘,f\,\,\n",\,‘_,-‘ 7NN s
JRA PRSUNNN
IENITINTSS AN A VW
-1200 ! 60
0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch

Figure 4: Mean Reward (top) and Slowdown (bottom) for the
non-streaming data training scenario (see 5.1.1).

Tetris test —-—-- Randomtest ~—— RL-TAPS train
—== SJF test —— RL-TAPS test
800 110
j=
T _900 2 100 el M Ao
o Y TN A)
o ke A VAN
£ -1000 2 o [oy
o o IAVAY IR
= —1100 /:'\,\,'\,\‘P\/,’\v\ fnvsnls | D g LY, a7 i/ ' 'l‘v-\l,‘,-_‘/
© Ay ,\" ; Avazet W e \
O -1200 R RN ©
= L 70
-1300 =
. . . - . - 60, . . - . -
0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch

Figure 5: Total Reward (left) and Slowdown (right) for the
streaming data training described (see5.1.1).

is that training can start in simulation and thus the scheduler could
potentially be useful when it is deployed, without having to wait
months to be trained.

6 DISCUSSION

Training NNs with the Policy Gradient method is often fraught with
difficulties such as unstable policy parameters. Interesting and also
concerning is that most of the learning in our experiment happens
very early on and quickly plateaus. Further investigation is needed
with regard to whether learning is stopping prematurely, or actually
progressing well very quickly. With respect to the environment
modelling, one limitation is that we have not yet modelled the
cost of pausing and restarting DDL type jobs. Given the strong
performance of RL-TAPS thus far, however, we are hopeful that
RL-TAPS will still be capable of outperforming the no-preemption
methods. Making this improvement may require some change to the
input or the RL simulation. Another limitation currently is that the
NN input design makes simulating large cluster sizes prohibitive.
The jobslot representations are quite wasteful as many units of the
input may end up with zeros. A fully connected hidden layer to
a large input layer is not scalable. The large output search space
also contributes to the high parameter count of our NN (roughly
1 million). Nonetheless, once trained, our NN completes a single
inference step in less than 0.1 seconds on CPU. If incorporated into
a production scheduler, RL-TAPS will not require many resources.

CASCON 20, Nov 10-13, 2020, Toronto, Canada

7 CONCLUSION AND FUTURE WORK

We proposed a deep reinforcement learning based scheduler that
simultaneously selects jobs and assigns resources to them. Job se-
lection and resource allocation are non-linearly related and this
scheduler addresses the challenge associated with attempting to
simultaneously solve these two dependent combinatorial optimiza-
tion problems. Our scheduler RL-TAPS considers the topology of
the environment and allows for full preemption. We evaluated the
performance of RL-TAPS in different scenarios and compared it
against various baselines demonstrating the efficiency and effec-
tiveness of our method.

Going forward, we wish to address the scalability issue of the NN.
In the short term, we will try reformulating the input into some-
thing that is more compact, with room to incorporate topology
bandwidth information. There is also the need to solve additional
assignment problems such as which reduction algorithm to assign
to a job for both intra-machine and inter-machine communication.
For example, Nvidia’s NCCL library as well as IBM’s DDL library
consists of various different gradient reduction (i.e. averaging) al-
gorithms for both within and between machine communication.
The question of how to solve multiple simultaneous assignment
problems without exploding the search space must be investigated.

In addition to the full preemption scheduling of RL-TAPS, we
wish to explore other preemption methods mentioned in section
1. Designing a full-preemption NN was less complicated then de-
signing an NN that can handle partial-preemption decisions due to
the requirement of enforcing constraints in the latter. Currently, to
our knowledge, there exists no NN architecture method that would
allow one to enforce inequality constraints. The combinatorial op-
timization techniques with NNs to date have all avoided tackling
such problems. We approached this issue in our work through
penalties, but RL-TAPS fails to enforce them strictly. Likely this
problem may require novel NN ideas to solve, and would be a very
interesting endeavour.

REFERENCES

[1] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio.
2017. Neural Combinatorial Optimization with Reinforcement Learning. ArXiv
(Jan. 2017). http://arxiv.org/abs/1611.09940 arXiv: 1611.09940.

Alexandre Caldeira, M. Kahle, Gerard Saverimuthu, and K. C. Vearner. 2015. IBM

power systems S822LC technical overview and introduction. IBM Red Paper

(2015).

Minsik Cho, Ulrich Finkler, Sameer Kumar, David Kung, Vaibhav Saxena, and

Dheeraj Sreedhar. 2017. PowerAI DDL. (Aug. 2017). https://arxiv.org/abs/1708.

02188

[4] Giacomo Domeniconi, Eun Kyung Lee, and Alessandro Morari. 2019. CuSH:
Cognitive ScHeduler for Heterogeneous High Performance Computing System.
In DRL4KDD 19: Workshop on Deep Reinforcement Learning for Knowledge Discover.
7.

[5] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker,
and Ion Stoica. 2011. Dominant resource fairness: fair allocation of multiple
resource types. In Proceedings of the 8th USENIX conference on Networked systems
design and implementation (NSDI'11). USENIX Association, Boston, MA, 323-336.

[6] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and
Aditya Akella. 2014. Multi-resource packing for cluster schedulers. In Proceedings
of the 2014 ACM conference on SIGCOMM - SIGCOMM ’14. ACM Press, Chicago,
Illinois, USA, 455-466. https://doi.org/10.1145/2619239.2626334

[7] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeongjae Jeon,
Junjie Qian, Honggiang Liu, and Chuanxiong Guo. 2019. Tiresias: A {GPU}
Cluster Manager for Distributed Deep Learning. 485-500. https://www.usenix.
org/conference/nsdi19/presentation/gu

[8] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. 2016.
Resource Management with Deep Reinforcement Learning. In Proceedings of the
15th ACM Workshop on Hot Topics in Networks (HotNets '16). ACM, New York,

[2

—

(3

92

Bon Ryu, Aijun An, Zana Rashidi, Junfeng Liu, and Yonggang Hu

NY, USA, 50-56. https://doi.org/10.1145/3005745.3005750

Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V. Le, and Jeff
Dean. 2018. A Hierarchical Model for Device Placement. (Feb. 2018). https:
//openreview.net/forum?id=Hkc-TeZ0W

Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus Larsen,
Yuefeng Zhou, Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff
Dean. 2017. Device Placement Optimization with Reinforcement Learning.
arXiv:1706.04972 [cs] (June 2017). http://arxiv.org/abs/1706.04972 arXiv:
1706.04972.

Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo. 2018.
Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters.
In Proceedings of the Thirteenth EuroSys Conference (EuroSys '18). ACM, New York,
NY, USA, 3:1-3:14. https://doi.org/10.1145/3190508.3190517 event-place: Porto,
Portugal.

Samuel. 2020. albanie/convnet-burden. https://github.com/albanie/convnet-
burden original-date: 2017-08-04T10:11:16Z.

Richard S. Sutton. 2018. Reinforcement learning: an introduction (second edition.
ed.). The MIT Press, Cambridge, Massachusetts.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2017. Pointer Networks.
arXiv:1506.03134 [cs, stat] (Jan. 2017). http://arxiv.org/abs/1506.03134 arXiv:
1506.03134.

Ronald J. Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Mach Learn 8, 3 (May 1992), 229-256.
https://doi.org/10.1007/BF00992696

Wei Zhang. 1996. Reinforcement learning for job-shop scheduling. (1996).

Wei Zhang and Thomas G. Dietterich. 1995. A reinforcement learning approach
to job-shop scheduling. In IJCAI Vol. 95. Citeseer, 1114-1120.

Wei Zhang and Thomas G. Dietterich. 1996. High-performance job-shop schedul-
ing with a time-delay TD (A) network. In Advances in neural information processing
systems. 1024-1030.

—
)

[10

[11

[12

[13

(14

[15

e
N

(18

A INPUT CALIBRATION

To integrate the simulation with the reduction time measurements,
we associate a time span in seconds, t,44ys(c)> With each row of the
input image, and a computational distance for per cell, d..;;. The
table below shows how t,5,,(c) is calibrated as the time in sec-
onds it would take a vgg-vd-19 model to complete 1000 minibatch
iterations using a single GPU, over the horizon of the input image.

Table 2: Formulas to derive t,5,,(c) and d¢,

subscript ¢ | calibration variable

subscript f | means final or total
vgg-vd-19 | calibration DNN model
dex(c) | 20 X 10° FLOPs, complexity of model
mc) | 256, minibatch size of model

computational distance per minibatch

dm(c) = dex(c) m(c)

itf(c) ‘ 1000, total number of job iterations
9(c) ‘ 1, number of columns to represent the job
d £(e) = itf(c) dm(e)9(c) ‘ total computational distance of the job
U(¢) = UP100 ‘ GPU speed
df(c . .
tr(e) = % ‘ total job run time in seconds
rows(¢) ‘ 10, number of rows (horizon)
n(c) =rows()9(c) ‘ Tu;)mlber of highlighted cells for job in
jobslot
deell = if((:)) ‘ calibrated computational distance per cell
trow(c) = 7 otﬁsc()c) ‘ calibration time of each row in seconds

http://arxiv.org/abs/1611.09940
https://arxiv.org/abs/1708.02188
https://arxiv.org/abs/1708.02188
https://doi.org/10.1145/2619239.2626334
https://www.usenix.org/conference/nsdi19/presentation/gu
https://www.usenix.org/conference/nsdi19/presentation/gu
https://doi.org/10.1145/3005745.3005750
https://openreview.net/forum?id=Hkc-TeZ0W
https://openreview.net/forum?id=Hkc-TeZ0W
http://arxiv.org/abs/1706.04972
https://doi.org/10.1145/3190508.3190517
https://github.com/albanie/convnet-burden
https://github.com/albanie/convnet-burden
http://arxiv.org/abs/1506.03134
https://doi.org/10.1007/BF00992696

Pred-Cache: A Predictive Caching Method in Database Systems

Omar El Zarif, Safwat Hassan
(oelzarif,shassan)@cs.queensu.ca
Queen’s University
School Of Computing
Kingston, Ontario, Canada

ABSTRACT

The performance of large-scale systems (LSS) depends heavily on
the time consumed in retrieving users’ data from the databases.
The database management system (DBMS) is essential to handle
the storage and retrieval of users’ data. Recent studies show that
performance degradation in retrieving users’ data can cause a severe
revenue loss. Hence, improving the performance of the DBMS is
essential for maintaining and enhancing user experience.

Query caching is a technique employed by the DBMS that presents
immense improvements to the overall performance of the system.
Prior work improves query caching techniques by maximizing the
reuse of the cached queries (e.g., deciding on the beneficial queries
to cache and deciding on the cache eviction and replacement poli-
cies). However, the existing work is tailored to specific server query
languages and lacks in the adaptation to the different changing
factors in the system, such as the occurrences of queries, the time
of their occurrence, and query coupling.

In this work, we propose a predictive database caching frame-
work, which can be deployed as a middleware layer independently
from the database system. Our framework uses deep learning mod-
els to predict expensiveness (in terms of execution time) and the
occurrences of queries to guide the caching process. We evaluate
our framework using the TPC Benchmark DS (TPC-DS) database
where we generate a 50GB database with 100,000 queries. Remark-
ably, our framework improves the cache hit ratio by 6% to 29% over
the existing query caching mechanisms in the different benchmark
scenarios that simulate the different types of query histories.

KEYWORDS

database systems, deep learning, neural networks, query caching

1 INTRODUCTION

The composition of modern software systems, particularly large-
scale software systems, relies heavily on the interaction of the
software with the database system to process the imposed huge
amounts of data. Query caching is considered an essential technique
to improve the performance of the software systems by improving
the execution times in the database [8, 16, 17, 55].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CASCON’20, November 10 - 13 2020, Toronto, Canada

© 2020 Copyright held by the owner/author(s).

Ying Zou
ying.zou@queensu.ca
Queen’s University
Department of Electrical and
Computer Engineering
Kingston, Ontario, Canada

93

Calisto Zuzarte, Vincent
Corvinelli, Mohammed
Alhamid

(calisto,vcorvine)@ca.ibm.com
mohammed.alhamid@ibm.com
IBM Canada Ltd

Cache at time t

If Q(t) exists in the cache, The query caching
then the system reuses the mechanism
cached query updates the cache Cache at time t +1

Figure 1: An overview of the query caching mechanism.

Query at
time t. Q(t)

Query caching increases the performance of a system as it elimi-
nates the re-execution of queries. Figure 1 shows an overview of
the query caching mechanism. As shown in Figure 1, the new com-
ing query at time t Q(t) is matched against the cache to eliminate
the re-execution of queries in the system [38, 59]. Then, the query
caching mechanisms decide whether to update the content of the
cached queries if Q(t) is not already cached. The decision to cache a
query should aim to maximize the reuse of the query, and thereby
increase the system performance while adhering to the memory
constraints of the system [36, 44]. Query caching is an extensively
studied topic in database systems [4, 20, 38, 40, 42, 43, 59]. It has
been approached by different aspects, such as identifying benefi-
cial queries to cache in a system and deciding the optimum query
eviction or replacement policies [4, 5, 40, 42].

Prior work proposes reactive caching mechanisms that main-
tain the cache content by controlling the cache eviction mecha-
nisms, such as Least Recently Used (LRU) [36], Least Frequently
Used (LFU) [44], and Least Recently Frequently Used (LRFU) [37]
mechanisms. The content cached by applying reactive mechanisms
is driven by the current access patterns in the system (e.g., caching
the most frequently used queries). The reactive caching mecha-
nisms are easy to implement. They proved their efficiency in the
cases of repetitive data in the system. However, under constrained
cache sizes these strategies lead to thrashing in the system [14].
The mechanisms are passive and slow as they start by caching a
huge amount of insignificant data until popular data patterns start
to emerge [10, 12, 61].

In contrast, proactive caching mechanisms are introduced to
solve the slow responsiveness of the reactive caching mechanisms [40,
43, 62]. Proactive caching tends to evaluate the cost of queries (in
terms of execution time) before deciding on the caching process.
For example, prior work relies on the execution time estimation
using query execution plans (QEPs) to cache the queries with a
high-execution time [26, 43]. However, query execution plans are
system-oriented and require manual work and tuning of the data-
base system for better cost estimation [13, 31, 52].

To introduce a cache between the software’s query request and
its execution in the database system, we present a framework for

CASCON’20, November 10 - 13 2020, Toronto, Canada

proactive query caching in database systems as follows. First, the
framework predicts the upcoming queries using a recurrent neu-
ral network (RNN) [47]. Second, the framework predicts the cost
(as the execution time and memory requirements) of the upcoming
queries using a feed-forward neural network (FFNN) [65]. Finally,
our framework caches the upcoming queries with long-execution
time and low-memory requirements predictions (i.e., prefetch and
cache the cost-efficient queries).

We assess the impact of using our framework on the perfor-
mance of the system by calculating the cache hit ratio [71]. In
particular, we compare the performance of our framework with the
traditional reactive caching mechanisms (i.e., LRU, LFU, and LRFU
mechanisms). We benchmark our work following various generated
scenarios of query executions (e.g., running queries in sequential
order) in the system. Each scenario was produced from the TPC-DS
workload benchmark [49, 56] where we generated 100,000 queries
on a 50GB database to simulate our study. In particular, we analyze
the following research questions (RQs) to evaluate our framework:
RQ1: How accurate are the cost estimation and the prefetch-
ing functions?

The feed-forward neural network exhibits high accuracy in
the prediction of memory and runtime with AUC above 0.9. In
addition, the recurrent neural network exhibits high accuracy
in predicting the next queries with a perplexity score of 25.
RQ2: What mechanisms exceed in terms of the cache hit ra-
tio in the different benchmark scenarios?
The prefetching of the predicted queries (i.e., using RNN) and
the prefetching of the cost-efficient queries (i.e., using both
RNN and FFNN) outperform the traditional reactive caching
mechanisms in all of our benchmark scenarios.
RQ3: What is the percentage of improvement of our frame-
work over the traditional mechanisms?
Using our proactive caching framework, the percentage of im-
provement in the cache hit ratio ranges from 6% to 29%, on
average, over the traditional reactive caching mechanisms (i.e.,
LRU, LFU, and LRFU).
Our main contributions can be described as follows:

(1) We present a proactive caching framework that combines the
query cost estimation and the prefetching of future cached
queries in the system.

(2) Our framework can be deployed as an independent in-memory
middleware layer between any software and database as the
queries are abstracted. Hence, it does not require any config-
uration or modification in the database system.

(3) The benchmark results exhibit improvements of our proac-
tive caching mechanisms over the work of the traditional
reactive caching mechanisms.

Paper Organization: The rest of the paper is organized as fol-
lows, we provide a background on FFNN and RNN in Section 2. We
describe the data collection process in Section 3. We describe our
framework in Section 4. We showcase the results in Section 5. We
discuss the threats to validity in Section 6. We present the related
work in Section 7. Finally, we conclude the paper in Section 8.

94

El Zarif, et al.
- 100k queries
Generate the . Execute the
. : 100k queries) labelled
100 queries q”??;%_agg)DB and 50GB DB/ ol with runtime and
template P memory usage,

Figure 2: The data labeling process.

2 FFNN AND RNN BACKGROUND

We use the RNN and the FFNN to predict the upcoming queries
and prefetch the cost-efficient queries.

The FFNN is the basis of supervised deep learning problems.
FFNN is a form of the basic neural networks where the information
flow from one layer to the next layer in a unidirectional manner,
unlike recurrent neural networks where the information flow bidi-
rectionally from next and previous layers [65]. The FFNN works
by estimating a function f*. The problem is defined as a classifier
y = f*(x) that maps an input x to a class y. The FENN defines a
function y = f(x, 6), where it learns the parameter 0 to approx-
imate the value of f*(x). The input x defines the first layer, the
function f represents the intermediate layers, and the output y
defines the last layer. The information flows from the first to the
last layer, where the parameter 0 is evaluated at the output layer,
and recalculated for the next f*(x) estimation [23].

The RNN is a descendant of the FFNN. The work of the RNN
suits the problem of classifying a sequence of inputs to a sequence
of outputs. The RNN maps a sequence of inputs x...x, to outputs
Y...yn. Where the function y = f*(x) maps each x to y over the time-
steps of t7...t,,. To approximate the function f*, the RNN defines the
functions y; = f(x, 0; +0;-1), where the parameter 6 is reevaluated
at each time step to approximate the value of f*(x) [23, 47].

3 DATA COLLECTION

Our study is based on the TPC-DS database [49]. The database
represents a data warehouse that revolves around online analytical
processing tasks. TPC-DS database emulates a decision-support
system of a retail product supplier with 100 defined queries that
represent reporting jobs, which covers all the database tables. The
database schema constitutes of 24 tables with an average of 18
columns per table, and 108 foreign keys, which signifies the com-
plexity of the system.

The TPC-DS database employs benchmarking capabilities where
it allows scaling and augmenting the database size and queries [56,
57]. Neural networks require data samples in the order of thousands
to be trained [6, 67]. Hence, we augmented the number of original
queries in the TPC-DS database to attain a sufficient number for
the training and validation of our neural networks.

The augmentation of queries uses each of the 100 most used
queries as templates. We augment to 1,000 queries from each tem-
plate query by replacing the conditional operations that follow the
WHERE clause in the query with random values. In the end, we gen-
erate a 50 GB SQL database, with 100 thousand queries augmented
from the 100 most used queries in TPC-DS.

We showcase the labeling process in Figure 2. The queries need
to be labeled by their execution time and memory consumption
to train our FFNN model, as the FFNN serves as a cost estimator.
The FFNN model predicts the runtime and memory consumption
of a new incoming query to guide the caching decision. We labeled

Pred-Cache: A Predictive Caching Method in Database Systems

Table 1: The data set description.

Data Set # of # of Description
queries unique
queries
Full data 100,000 29,000 The whole number of generated
queries.
Training data 70,000 23,000 Data used to train and validate the
FFNN.
Benchmarking 30,000 6,000 Data used to train the RNN and bench-

data mark our approach.

the queries by loading the TPC-DS dataset to Spark [74]. Then, we
execute the 100 thousand queries using Spark framework. Spark is
an open-source parallel computing framework that allows import-
ing large-scale databases and the parallelization of the execution
of multiple queries in the system. This process allows an accurate
memory and runtime recording in terms of milliseconds and bytes.

The initial data collection process allows us to establish a bench-
mark of 100 thousand queries that serve as the basis of our approach
for training, testing and benchmarking our two neural networks in
different scenarios. As shown in Table 1, the 100 thousand queries
were cut into 70% to train and validate the FFNN and 30% to train
the RNN. The same 30% of the queries were also used to benchmark
our approach.

4 OVERVIEW OF OUR FRAMEWORK

Figure 3 shows an overview of our approach. For each incoming
query in the system, first, our framework generates the query em-
beddings that converts the input query text to an embedding vector.
Second, our framework predicts the next upcoming five queries using
the RNN. We chose the number five since the RNN is able to cor-
rectly predict the next five queries with high accuracy of 95%, on
average, in our hyperparameter tuning experiments. The accuracy
in predicting more than five upcoming queries drops by 15% when
that number is incremented by five progressively (i.e., next 10, next
15, etc.). We discuss that process further in Section 6. Third, the
FFNN predicts the cost (i.e., the runtime and memory consumption)
of the upcoming queries. Finally, the framework prefetches the cost-
efficient queries among the upcoming ones. Our framework evicts
queries based on any reactive caching algorithm (e.g., LRU, LFU,
and LRFU) when the cache size would not fit the upcoming queries.
In the next sections, we describe the steps for generating query
embeddings, the architecture of the used neural networks (i.e., RNN
and FFNN), and the benchmark process.

4.1 Generate Word Embeddings for Queries

The FFNN processes the text embeddings of queries as an input. The
FFNN is trained to estimate the memory consumption and runtime
of the queries. Transforming the query text to query embeddings
inherently guards the meaning of the operations of the query which
makes the cost estimation achievable.

To extract embeddings for each query, we employ Word2Vec [21]
to transform each word in the query text to a 64 bits array. The
Word2Vec algorithm works by reducing each word in the input
(i.e., corpus) into a unique vector. The vectors are positioned in a

95

CASCON’20, November 10 - 13 2020, Toronto, Canada

hyperdimensional space where words that share common contexts
are positioned close to each other [60]. To represent the overall
embedding of a query, the vectors for each word in a query text
are summed and normalized using L2 normalization [70, 72]. To
validate the correctness of the final query embeddings, we use
the cosine similarity metric [53]. The cosine similarity measures
the angle between two vectors projected in a hyperdimensional
plane where a value of 1 signifies a total overlay of the two vectors
meaning that the vectors are identical [69].

To verify the contextual similarity of the generated embeddings
that are derived from the same template, we measure the cosine
similarity among the generated 1,000 queries of each template of
the 100 TPC-DS query templates. The mean cosine similarity varies
from 0.85 to 0.92 in the 100 query templates, which proves the
correctness of our embedding extraction.

The RNN extracts the patterns from a sequence of executed
queries. Hence, RNN needs to represent every query as a unique
value in the input sequence of queries [7]. To represent the queries
as unique values, we hashed the whole query text into 256 bits
hash using SHA256 [58]. The algorithm secures collision resistance
giving a unique hash for each text [33], thus securing unique words
for each unique query.

4.2 Architecture of Neural Networks

The Feed-Forward Neural Network. The FFNN [65] is used to
estimate the cost of executing a query. It consists of two hidden
layers with rectified linear units (ReLU) [48]. The input layer of the
neural network is of size 64 bits and accepts the aforementioned
extracted embeddings of the queries. The neural network has two
outputs layers: the first layer is used for predicting the memory
consumption of the query, and the second layer is used to predict
the execution time of the query. The two outputs employ a Soft-
max activation function. Softmax serves a multi-class probability
prediction at the last layer of the neural network by normalizing
the outputs by the sum of their exponents to represent them as a
probability distribution [22].

To adhere to the usage of Softmax as output layers, we quan-
tized the runtime and memory consumption. Quantization serves
in increasing the accuracy of predictions in neural networks by
predicting the quantiles (i.e., the classes) instead of predicting a
distribution of real numbers [18]. We quantize the runtime and
memory distributions to three classes (e.g., low, medium, and high).
The first class represents the quantile from 0% to 33% that is the
low-level memory consumption or runtime, the second class de-
scribes the 34% to 66% quantile that is the medium-level memory
consumption or runtime, and the last class from 67% to 100% quan-
tile represents the high-level runtime or memory consumption.
This process avoids predicting the exact runtimes or memory con-
sumption to a classification task that predicts ranges of runtime or
memory consumption described as low, medium, and high.

The FFNN is trained on 70 thousand of the 100 thousand gen-
erated queries (i.e., training and validation dataset) as shown in
Table 1. We guarantee the uniqueness in the training dataset to
eliminate overfitting in the neural network that may occur if the
same data appears in the training and the validation process. Hence,
we train and validate the FFNN on the 23 thousand unique queries

CASCON’20, November 10 - 13 2020, Toronto, Canada El Zarif, et al.

Predict the next five Estimate the cost of each
queries using the RNN query using the FFNN

Memory and
runtime predictions
of the five upcoming
queries

Five
upcoming
queries

Generate Word
embeddings for the
incoming queries

Prefetch the cost-efficient

Incoming queries

query

Updated
cache

query
embeddings
Figure 3: An overview of our query caching framework.

of the training dataset after filtering the 70 thousand queries from Random Dataset. The random dataset is formed by shuffling the
duplicates. whole benchmark dataset. We chose random scenario as a stress

This data (i.e., the 23,000 queries) is split into 80% training and test for our framework. The sequential and batch histories will
20% validation split using 10 folds cross-validation. Each fold is split guarantee patterns that will enhance the work of the prefetching
into the same percentage (80%-20%) as we trained and validated mechanism (i.e., the RNN). In contrast, we test our prefetching
the FENN. mechanism when the scenario is formed by a random occurrence
The Recurrent Neural Network. The neural network consists of queries. An effective prefetching mechanism should not suffer
of two long short term memory (LSTM) layers [19] with 10 units from a major degradation in performance in this scenario.
per layer. The LSTM layer serves the objective of predicting future
queries at each time step. The time steps are the index of the query 4.4 The Benchmark Process

in the sentence of queries. The LSTM is widely used to process a
sequence of data as it solves the vanishing gradient problem when
the sequence of data lingers in its length [64].

As shown in Table 1, we train the RNN on the 30 thousand
queries that form the benchmark dataset. The vocabulary of the
dataset consists of 6 thousand unique queries after filtering the
30 thousand queries from duplicates. Hence, the output layer of
the RNN consists of a Softmax layer with 6 thousand classes that
represents the vocabulary of our corpus (i.e., the number of unique
queries in the benchmark dataset). The Softmax layer serves as
a probability prediction of the most suitable word (i.e., query) to
occur at each time step. We take the highest five probabilities to
predict the upcoming five queries from the previous queries.

The benchmark process relies on three different workloads that
are generated similarly to the datasets for training the RNN. To
simulate the work of the RNN and the FFNN in practice, we gen-
erate from the benchmark dataset another sequential, batch, and
random datasets. The benchmark workloads were also generated
from the same data that was used to train the RNN to guarantee
that the same vocabulary (i.e., corpus for the RNN) is consistent.
But the generation guarantees a different order of occurrences of
queries. Hence, the training and the benchmark data for the RNN
are different.

We evaluate the results on each generated benchmark dataset
on its own comparing the cache hit ratio of the proactive caching
mechanisms (e.g., the RNN, and the combination of the RNN with
the FENN) and the reactive caching mechanisms (e.g., LRU, LFU,
and LRFU). The execution time in the system should be reduced
4.3 Generating The Different Datasets with the presence of the same incoming query in the cache, while
the cache hit ratio increases when the same incoming query is
present in the cache. Thus, the cost estimation and the prefetching
mechanisms are compared against the traditional mechanisms LRU,
LFU, and LRFU. The cache hit ratio is recorded gradually while we
process the queries from each generated benchmark dataset into
the system and either execute them or reuse the queries from the
cache if they are present as shown in Figure 4.

The datasets for training the RNN is formed by hashing the query
texts and generating the order of queries under three different
scenarios. Each scenario represents a different plausible real-life
occurrence of queries. The RNNs identify the occurrences of queries
to form patterns that lead to the prediction of upcoming queries.
The occurrences are represented by the repetition of the same hash.
Sequence Dataset. The sequence dataset represents the queries
that occur sequentially in real-life scenarios. For example, some
queries might be part of a task where they are always executed

4.5 Caching Decision for the Different

consecutively. This could be part of a reporting job where differ- Mechanisms

ent queries on different tables are executed in sequence to extract As shown in Figure 4, we compared each of our mechanisms (i.e.,
the data. To generate the sequence dataset, we choose a random the RNN plus the combination of the RNN and the FFNN) against
query from each of the 100 templates in our benchmark dataset the traditional reactive caching mechanisms (i.e., LRU, LFU, and
sequentially until we reach all the queries in the benchmark dataset. LRFU) to validate the performance of each our mechanisms.
Batch Dataset. The batch dataset represents a scenario where the The RNN predicts for each incoming query the next five incom-
queries might co-occur as a batch of jobs. Similarly to the sequential ing queries and caches them. The prefetching mechanism relies on
scenario, the batch represents jobs where a group of queries is the patterns of occurrences of queries learned from the training
repeated in a sequence. The generation of the batch dataset is process.

similar to the sequence dataset where the only difference is instead We combined the recurrent neural network and the FFNN
of choosing one query of each template to run sequentially, we (RNN-FFNN) to prefetch and cache expensive queries only. After
chose n numbers of queries of each template from the benchmark predicting the next five upcoming queries, each query would fall un-
dataset randomly to run sequentially. der the prediction of the FFNN to estimate the runtime and memory

96

Pred-Cache: A Predictive Caching Method in Database Systems

30K queries
sequence
dataset

30K queries
batch dataset

30K queries
random
dataset

Cache using
RNN and RNN-

-
a
z
z

Generate the Run the generated
benchmark

datasets

Calculate the
cache hit ratio

30K
Queries

datasets
Cache

using LRU, LFU
and LRFU

Figure 4: The benchmark process.

consumption. The mechanism prefetches and caches the queries
with medium or high runtime and low memory consumption when
the cache is 70% full. The condition is relaxed when the cache does
not reach that threshold to cache any incoming query. We have
tested this mechanism under different thresholds and found that
70% is the best suitable threshold under different cache sizes. The
low, medium and high predictions are the results of the quantiza-
tion of the real values as described in the data processing to three
classes or quantiles.

The two caching mechanisms that serve the prefetching (RNN),
and the cost estimation and prefetching combined (RNN-FFNN)
would guide the decision for caching the queries, but their work
is incomplete with the absence of caching eviction mechanisms.
Hence, we implemented the work of LRU, LFU, and LRFU to be
employed as cache eviction policies, either on their own or with
the combination of our proactive caching mechanisms (RNN, and
RNN-FENN).

We benchmark our results and compare the usage of each tra-
ditional mechanism with its modified version respectively (e.g.,
comparing LRU with the RNN that uses LRU as an eviction mecha-
nism).

5 RESULTS

In this section, we present the motivation, the approach, and the
results of the studied research questions.

5.1 RQ1: How accurate are the cost estimation
and the prefetching functions?

Motivation: Before employing our two neural networks (FFNN
and RNN), we need to evaluate the accuracy of our work in cost
estimation and the prediction of the next queries. Hence, we can
ensure the correctness of the predictions of our two neural networks
to employ them in prefetching the cost-efficient queries.
Approach: To evaluate the FFNN we rely on the area under the
curve (AUC) metric [24, 25]. Our model outputs probability predic-
tions for runtime and memory consumption. AUC tests the fit of our
model in probability predictions with different thresholds. A model
with an AUC value of 0.5 signifies a random prediction model. A
model with an AUC value of 1 signifies a model with perfect true
positives and true negatives predictions, while a model with an
AUC value of 0 signifies a model with perfect inverse probability
predictions [51].

We train our model on 10 folds cross-validation, thus the AUC
is calculated as the average AUC of the 10 folds on the validation

97

CASCON’20, November 10 - 13 2020, Toronto, Canada

sets [45]. The 10 fold cross-validation reshuffles the data and re-
trains the network from scratch on each fold. Hence, the average
AUC demonstrates the effectiveness of our model in different data
distributions.

To ensure that the model is not showing bias in the result we
enforced weight class distribution in the training sets. The weights
added to the cross-entropy loss function (i.e., the neural network
loss function) ensure that the loss function is weighted to over-
come the biases in predicting one certain class since it is more
dominant [35, 73]. The average class weight across the 10 sets for
the runtime is 1.03 for class 0, 1.01 for class 1, and 0.95 of class
2. (The classes 0 to 2 represent the low, medium, and high classes
respectively). The average class weight for the memory is 0.80 for
class 0, 1.92 for class 1, and 0.81 for class 2.

The RNN is evaluated based on the perplexity score of the pre-

dictions. Given a sequence of input queries, the RNN predicts the
next query to occur. The RNN model uses a sequence loss function
(e.g., cross-entropy function) that predicts the most suitable query
from the vocabulary of queries at each time step. The model can
then be evaluated as a sequence to one prediction error by using
the perplexity metric. The perplexity measures the fit of the query
distributions on unseen data. The measured value represents the
inverse of the prediction probability of what is the next query to
occur. The perplexity is an unbounded function that can span to
infinity [30].
Results: We recorded the AUC for the runtime classification and
the AUC for the memory consumption classification. The runtime
AUC is 0.94 and the memory consumption AUC is 0.92. The AUC
function is resilient for varying class distributions, so the result
does not show biases [29]. The AUC was recorded as the average
of the 10 folds cross-validation on the validation sets. The training
and testing of the FFNN are produced on the training dataset, as
described in Section 3.

The RNN achieves an average perplexity score of 25 on the three
benchmark datasets. The lowest perplexity measure is 1, it means
that the fit is perfect, while a good language model should have a
perplexity lower than 200 [9].

Summary of RQ1

The FFNN exhibits high accuracy in the prediction of mem-
ory and runtime with AUC above 0.9. In addition, the RNN
exhibits high accuracy in predicting the next queries with
a perplexity score of 25.

5.2 RQ2: What mechanisms exceed in terms of
the cache hit ratio in the different
benchmark scenarios?

Motivation: In the previous RQ, we observe that our approach
can accurately predict the upcoming queries. In this RQ, we aim to
understand whether our proactive caching mechanism outperforms
the existing reactive caching mechanisms (i.e., LRU, LFU, and LRFU).
Understanding the optimum caching mechanism can help system
owners better select suitable caching mechanisms to improve the
performance of the software systems.

CASCON’20, November 10 - 13 2020, Toronto, Canada

Table 2: The cache hit ratio of the sequence scenario with
different caching mechanisms and varying cache sizes.

El Zarif, et al.

Table 3: The cache hit ratio of the batch scenario with differ-
ent caching mechanisms and varying cache sizes.

Mechanisms Small cache Medium cache Large cache Normal cache Mechanisms Small cache Medium cache Large cache Normal cache
LRU 0.12 0.41 0.62 0.37 LRU 0.14 0.41 0.62 0.39
LFU 0.17 0.48 0.66 0.43 LFU 0.23 0.49 0.66 0.46
LRFU 0.12 0.41 0.62 0.38 LRFU 0.14 0.41 0.63 0.39
RNN + LRU 0.34 0.54 0.68 0.51 RNN + LRU 0.27 0.49 0.69 0.48
RNN + LFU 0.29 0.54 0.68 0.50 RNN + LFU 0.37 0.57 0.69 0.54
RNN + LRFU 0.34 0.54 0.68 0.51 RNN + LRFU 0.27 0.50 0.69 0.48
RNN-FFNN + LRU 0.32 0.54 0.69 0.51 RNN-FENN + LRU 0.17 0.39 0.67 0.41
RNN-FFENN + LFU 0.29 0.54 0.69 0.51 RNN-FFNN + LFU 0.28 0.51 0.70 0.52
RNN-FENN + LRFU 0.32 0.53 0.68 0.51 RNN-FFNN + LRFU 0.18 0.40 0.68 0.41

Approach: The performance of query caching mechanisms can be
impacted by the cache size. Hence, we evaluate the performance
of the studied caching mechanisms using different cache sizes (i.e.,
small, medium, large, and the normal cache size). We design the
different cache sizes as follows. First, we set up the cache limit. The
cache limit represents a relative portion of the workload data that
can be stored in the memory. Caching the full data of all users in a
large-scale system can be very expensive and practically infeasible
[54]. Hence, we choose 30% (i.e., 2,000 queries) of the number of
unique queries in our benchmark dataset as the cache limit.

Then, given a certain cache limit, we define the used cache sizes
as follows. The small cache size is calculated by multiplying the
cache limit (i.e., 2,000 queries) with the minimum memory size of
a query. The medium cache size is calculated by multiplying the
cache limit with the median memory size of a query. The large
cache size is calculated by multiplying the cache limit with the
maximum memory size of a query. Finally, the normal cache size is
calculated by multiplying the cache limit with the average memory
size of a query. For every cache size, we recorded the cache hit ratio
using three different benchmark datasets (i.e., sequence, batch, and
random).

We benchmark two proactive mechanisms (1) fetching the up-

coming queries (i.e., using RNN) and (2) fetching the cost-efficient
queries (i.e., using RNN and FFNN named as RNN-FFNN). In addi-
tion, we benchmark three reactive approaches LRU, LFU, and LRFU.
As described in Section 4, proactive caching can use different evic-
tion mechanisms. Hence, we benchmark every proactive caching
mechanism (i.e., RNN and RNN-FFNN) with the three reactive ap-
proaches LRU, LFU, and LRFU. We represent the RNN that uses
the LFU cache eviction mechanism as “RNN + LFU”, the RNN that
uses LRU as “RNN + LRU”, and the RNN that uses LRFU as “RNN +
LRFU”. Similarly, we represent the RNN-FFNN that uses the LRU
cache eviction mechanism as “RNN-FFNN + LRU”, the RNN-FFNN
that uses LFU as “RNN-FFNN + LFU”, and the RNN-FFNN that uses
LRFU as “‘RNN-FFNN + LRFU”.
Results: Benchmarking the Sequence Scenario. As shown in
Table 2, the RNN-FFNN and the RNN exhibit the best results with
the normal cache size. The cache hit ratio ranges from 0.50 to
0.51 when using RNN or RNN-FFNN combined with any reactive
caching mechanism including LRU, LFU, and LRFU.

As shown in Table 2, in the small cache sizes, the RNN + LRU
and the RNN + LRFU perform the best. In the medium and large
cache sizes, adding the notion of cost estimation ameliorates the

98

performance of prefetching. RNN-FFNN on top of the two reactive
caching mechanisms LRU and LFU exhibits the best cache hit ratios
of 0.54 and 0.69 for medium and large cache sizes respectively.

In summary, the RNN and the RNN-FFNN perform the best. In
the small cache sizes, the RNN performs better than the combination
of RNN and FFNN. The RNN-FENN performs the best on medium
and large cache sizes.

Prefetching all the co-occurrent queries would save time more
than prefetching the expensive ones only. This is due to some
queries that might occur frequently but are not expensive. In large
cache sizes, prefetching more co-occurrent queries would cause
thrashing, thus leading to caching unnecessary queries. The cost
estimation function (i.e., using FFNN) would tune the work of the
prefetching mechanism as it combines the expensive and the co-
occurrent queries.

Summary of benchmarking the sequence scenario

The prefetching function solely (i.e., RNN) or combined
with the cost estimation function (i.e., RNN-FFNN) exhibits
the best results in terms of the cache hit ratio in the se-
quence scenario.

Results: Benchmarking the Batch Scenario. The cache hit ra-
tio results summarized in Table 3 indicates that the prefetching
mechanism using the RNN + LFU performs the best with a 0.54
cache hit ratio on normal cache size. The RNN-FFNN + LFU comes
in second place with a cache hit ratio of 0.52 on normal cache size.
The cache hit ratio for the RNN + LFU outperforms all the other
mechanisms on all the cache sizes except on the large cache size,
where RNN-FFNN + LFU performs slightly better.

In summary, for the batch scenario, the RNN + LFU performs
the best. In smaller and medium cache sizes, the RNN solely per-
forms better than the combination of RNN and FENN. This is due
to the similar reasons in the sequence scenario that with bigger
cache capacities caching more content can cause thrashing. Hence,
the usage of FFNN to estimate the expensiveness and cache the
expensive queries would tune the performance of the system on
larger cache sizes.

Pred-Cache: A Predictive Caching Method in Database Systems

Table 4: The cache hit ratio of the random scenario with dif-
ferent caching mechanisms and varying cache sizes.

Mechanisms Small cache Medium cache Large cache Normal cache
LRU 0.13 0.41 0.62 0.38
LFU 0.18 0.46 0.66 0.43
LRFU 0.13 0.41 0.63 0.38
RNN + LRU 0.15 0.46 0.66 0.41
RNN + LFU 0.19 0.51 0.67 0.45
RNN + LRFU 0.15 0.46 0.66 0.42
RNN-FFNN + LRU 0.14 0.45 0.66 0.41
RNN-FENN + LFU 0.19 0.51 0.68 0.45
RNN-FENN + LRFU 0.18 0.45 0.66 0.41

Summary of benchmarking the batch scenario

The prefetching function using RNN solely exhibits the
best results in terms of the cache hit ratio. The combination
of the prefetching and the cost estimation functions (i.e.,
using the RNN-FFNN) comes in second place in the batch
scenario.

Results: Benchmarking the Random Scenario. Following the
cache hit ratio results in Table 4, the combination of the RNN-FFNN
over LFU reaches 0.45 cache hit ratio, as well as the RNN solely.

As listed in Table 4, in small cache sizes, the RNN and the com-
bination of the RNN-FFNN over LFU perform the best with a cache
hit ratio of 0.19. For the medium cache sizes, the RNN and the
RNN-FFNN over LFU show the best performance with a cache hit
ratio of 0.51. Finally, for the large cache sizes, the RNN-FFNN over
LFU performs the best with a cache hit ratio of 0.68.

On average, the two mechanisms (RNN or RNN-FFN) over LFU
perform the best. In a random scenario, the prefetching mechanism
suffers from degradation compared with the other scenarios. This
is due to the absence of recognizable patterns for the recurrent
network to learn. However, adding the notion of prefetching still
improves the performance over the reactive caching mechanisms.
In addition, adding the notion of cost estimation helps to improve
the prefetching in larger cache sizes.

Summary of benchmarking the random scenario

The prefetching function (RNN) or the combination of the
prefetching and the cost estimation functions (i.e., using
the RNN-FFNN) on top of LFU outperforms the reactive
caching mechanisms (e.g., LRU, LFU, and LRFU) in the
random scenario.

5.3 RQ3: What is the percentage of
improvement of our framework over the
traditional mechanisms?

Motivation: In this RQ, we study the percentage of improvement

of our framework over the reactive caching mechanisms in the

three benchmark scenarios. This can help demonstrate the added
benefits in using our proactive mechanism on top of the existing
reactive caching mechanisms.

99

CASCON’20, November 10 - 13 2020, Toronto, Canada

Table 5: The percentage of improvement in cache hit ratio
of our framework over the traditional mechanisms.

Baseline % of improvement
mechanism Sequence Batch Random
LRU 35.4% 5.4% 8.7%

LFU 17.3% 7.3% 8.3%
LRFU 34.7% 6.1% 5.6%
Average 29.1% 6.3% 7.5%

Approach: The percentage of improvement is calculated as the
percentage of the increase in the cache hit ratio of one mechanism
over another. Table 5 shows the percentage of improvement of our
framework (i.e., the RNN-FFNN) over the LRU, the LFU, and the
LRFU mechanisms.

Results: Our proactive caching framework (i.e., the RNN-FFNN)
improves LRU from 5.4% to 35.4%. The RNN-FFNN improves LFU
from 7.3% to 17.3%. In addition, the RNN-FFNN improves LRFU
from 5.6% to 34.7%. The highest percentages of improvements are
in the sequence scenario that is 29% on average. The sequence
scenario represents the occurrences of queries in a well-defined
pattern where the work of the prefetching (i.e., RNN) would excel.

In the batch scenario, our framework improves over the tradi-
tional mechanisms by 6% on average. The improvements are lower
than the improvements of our framework in the sequence scenario
since the traditional mechanisms (LRU, LFU, and LRFU) use a greedy
approach to cache that fits the nature of the batch scenario. The
batch scenario could fit more repetitions of the same query in a
shorter time span than the sequence scenario where the greedy
caching attains better results.

For the random scenario, the improvement of our framework
over the traditional mechanisms is of 7% on average as it is hard
to predict the right upcoming queries in a scenario with no clear
patterns.

Summary of RQ3

Using our proactive caching framework, the percentage of
improvement in the cache hit ratio ranges from 6% to 29%,
on average, over the traditional reactive caching mecha-
nisms (i.e., LRU, LFU, and LRFU).

6 THREATS TO VALIDITY

This section addresses the threats to the validity of our approach as
follows. First, our approach estimates the cost of queries by feeding
the FFNN with the query represented as a word embedding. This
is a generalized approach that can be employed in any database
system. However, our approach has a drawback as the generated
embeddings may differ when the same query is written using aliases
or views (i.e., when queries written in a different syntax).

Second, the benchmark is inducted on three generated datasets.
We try to simulate the workloads in a system, whether in a se-
quential, a batch, or a random manner. This simulation grasps the
real-life occurrences of queries to a certain degree, but it is not fully

CASCON’20, November 10 - 13 2020, Toronto, Canada

accurate. In a perfect scenario, we would have based our study on
a recorded history of queries, but we could not find any available
rich queries history.

Third, to train the FENN, we labeled the queries by executing
them on the Spark framework. The process is strenuous and requires
approximately a week to complete the execution of all the queries.
Alternatively, if there exists a system that collects the history of
the executed queries with their respective runtime and memory
consumption, our work can be replicated easily.

Fourth, the prefetching mechanism that uses the RNN predicts
the five upcoming queries. The upcoming queries are either cached
using the prefetching mechanism solely or fed to the FFNN to
prefetch and cache the cost-effective queries. We chose number
five as a proof of concept in our work. However, the number of
predicted queries could be tuned based on multiple factors, such
as the repetitiveness of the executed queries. Further studies can
extend our work by optimizing the number of predicted queries
based on the nature of the query execution scenario.

Finally, our mechanisms assume that the history is fixed and no
unidentifiable incoming queries would occur in the system. That
is valid for benchmarking our prefetching and cost estimation ap-
proaches. But in real-life scenarios, the two mechanisms should be
monitored as with the increasing number of unidentifiable queries
the cost estimation and the prefetching might suffer from more er-
rors. Hence, we can monitor the queries in history periodically and
find a threshold where the number of new unidentifiable queries
would cause a clear degradation in the performance of our mecha-
nisms (tested by the cache hit ratio) that would drive us to retrain
our two neural networks.

7 RELATED WORK

The various work in query cache is divided into two main strategies
(1) reactive caching and (2) proactive caching. In this section, we
discuss the main query caching techniques.

7.1 Reactive Caching

The work on reactive caching focuses on the eviction and replace-
ment mechanisms that are concerned with identifying the stale
queries in the cache to be evicted. The eviction relieves the memory
overhead in the cache as it frees space for more beneficial queries
to be cached. The eviction mechanisms define protocols based on
recency and frequency to detect the stale queries in the cache.

Lange et al. [36] introduce the Least Recently Used (LRU) cache
eviction mechanism in their work on the CPUs’ registers caching.
The algorithm maintains an array of timestamps for each register
and the eviction happens by removing the data in the register with
the lowest timestamp. That simple idea was then reintegrated as
a generic caching algorithm for different fields, such as mobile
network and database systems [32, 46, 68].

Matick et al. [44] introduce Least Frequently Used (LFU); an-
other caching eviction mechanism following their work on caching
in CPUs’ registers. The algorithm stores access counts for each
register and evicts the data with the least count. This simple ap-
proach proved to be efficient and is considered on par with LRU,
as frequency and recency are the two most influential factors for

100

El Zarif, et al.

identifying stale cache. This mechanism also spanned to be reused
in databases and networks [15, 28].

Lee et al. [37] combine the work of LRU and LFU to create the
Least Recently Frequently Used (LRFU) mechanism. The compari-
son against the two algorithms showed that LRFU outperforms the
other two in a spectrum of cache capacities. The combination of
the recency and frequency is more effective for larger cache sizes.

In-memory database systems such as Redis [41] or Apache Ig-
nite [3, 77] are widely used nowadays for the fast access and data
caching/manipulation. Redis and Ignite are often employed as a
middleware layer that helps fast access to hot data to eliminate
the necessity of data access from the main traditional relational
database [34, 75]. Redis and Ignite employ LRU and LFU specifically
as cache eviction mechanisms due to their fast reactive nature of
eliminating stale cached queries [1, 2, 63].

Hon et al. [27] employ a dynamic web caching protocol. Web
pages are stored as HTML data in a cache placed as an intermediate
layer between the web server and the client. The protocol uses
a synchronization daemon that invalidates and evicts the cached
pages that are out of sync with the server.

Different from the aforementioned reactive caching studies, our
approach aims to predict queries that need to be cached and proac-
tively cache the cost-efficient queries.

7.2 Proactive Caching

The work in proactive caching revolves mainly on identifying the
beneficial data to cache in the system. The main objective is to
cache the content that maximizes the reuse of the cache and avoid
thrashing in the system. The work in proactive caching branches
from studying the popularity of data [11, 39, 40, 66], the data pat-
terns [11, 50, 76, 78], to the structure of the data [62], which even-
tually leads to maximizing the cache benefits.

Caching Based on Content Popularity. Luo et al. [40] develop
a framework for caching the most popular queries in the system.
The system follows statistical measures to consider the set of the
most used queries that are prioritized for caching.

Liu et al. [39] implement a deep learning approach to cache pop-
ular data in ICN networks. The neural network is adaptive and
retrainable depending on the network. The popularity prediction is
transformed into a discretized prediction problem where multiple
classes are predicted. This approach added with the cache replace-
ment scheme LRU showed a 15% to 40% improvement over the LRU
mechanism.

Tanzil et al. [66] introduce a proactive predictive approach to
cache popular YouTube content in cellular networks. The approach
uses a neural network to predict a 10 class popularity, where the
content with a higher class inflicts a more popular content. Their
work implements a segmented LRU algorithm for cache eviction.
Caching Based on Data Patterns. Chan et al. [11] describe a
generic predictive algorithm based on a recurrence based proba-
bilistic method to cache and prefetch the content with high hit
rates at the Wireless Edge. The approach is compared with other
predictive methods and shows on average a 12.5% improvement
over LRU and LFU and a 5% improvement over other predictive
methods.

Pred-Cache: A Predictive Caching Method in Database Systems

Zeydan et al. [76] work on caching in big data mobile networks
(e.g., 5G networks). The work tackles caching the clients’ informa-
tion at the network edge using contextual information such as the
browsing history and the spatio-temporal information.

Zhong et al. [78] introduce a Deep Reinforcement Learning ap-

proach that takes into consideration the recency and frequency fac-
tors to create an adaptive cache eviction mechanism. Their model
was trained on network content and compared with the work of
LRU and LFU. The reinforcement learning approach shows an im-
provement of 15% on average over LRU and LFU work over the
varying cache capacities.
Caching Based on Data Structure. Shim et al. [62] consider in
their work the partial reuse of queries consisting of a single JOIN
operation. Their work aims to identify the expensive subqueries to
be cached based on a dynamic query cost function that combines
the execution time, the memory requirements, and the frequency
of usage of the subquery. Their system also evicts from the cache
the stale content using the same cost function when newer queries
with higher cost need to be cached.

The aforementioned studies use different machine learning tech-
niques to manage the cache based on the predicted popularity or
the expected usage patterns of the cached content. Inspired by the
existing work, we use machine learning techniques (i.e., RNN) to
predict the upcoming queries. Then, our approach prefetches the
cost-efficient queries using the FFNN.

8 CONCLUSION

Query caching is an essential technique to ameliorate the perfor-
mance of a database system. The work on query caching spans
from the decision of queries to cache by estimating the execution
time savings or by greedy caching mechanisms that focus on the
eviction and replacement policies of the cache.

In this work, we combine the two concepts of cache decision
and cache eviction to develop a proactive caching framework. Our
framework employs cost estimation and prefetching mechanisms
combined with a reactive cache eviction policy. We compare our
work to the previous cache replacement policies that are employed
in current systems. From our experiments, we observe remarkable
improvements of 6% to 29% by using our framework comparing
with the existing work in terms of the cache hit ratio.

Our work was benchmarked in three scenarios that represent
the different workloads in real life, whether queries occurring in
sequence, batch, or random. The recursive neural network (RNN)
that serves the prefetching solely or with the combination of the
feed-forward neural network (FENN) that estimates the cost of the
queries exceeded in performance all the other caching mechanisms
(i.e., LRU, LFU, and LRFU).

Moreover, our work is not specific to a particular database system
and can be employed for any database system. Our framework can
also be used on an intermediate level between the client and the
database system to form an in-memory middleware layer that deals
with caching the queries as a whole. In the future, we plan to test our
approach on real data captured from real-world usage scenarios.

REFERENCES

[1] 2009. Redis cache eviction policies. https://docs.redislabs.com/latest/rs/
administering/database-operations/eviction-policy/. Accessed: 2019-12-01.

101

7

8

[12

(13

[14

[15

[16]

[17

[18

[19

[20

[
-

[22

[23

[24]

[29

CASCON’20, November 10 - 13 2020, Toronto, Canada

2015. Apache Ignite cache eviction policies. https://apacheignite.readme.io/docs/
evictions. Accessed: 2019-12-01.

Sujoy Acharya. 2018. Apache Ignite Quick Start Guide: Distributed data caching
and processing made easy. Packt Publishing Ltd.

Sibel Adali, K Selguk Candan, Yannis Papakonstantinou, and VS Subrahmanian.
1996. Query caching and optimization in distributed mediator systems. In ACM
SIGMOD Record, Vol. 25. ACM, 137-146.

Awny K Al-omari, Tom C Reyes, and Robert Wehrmeister. 2010. Hybrid database
query caching. US Patent 7,743,053.

Ahmad Alwosheel, Sander van Cranenburgh, and Caspar G Chorus. 2018. Is
your dataset big enough? sample size requirements when using artificial neural
networks for discrete choice analysis. Journal of choice modelling 28 (2018),
167-182.

Garen Arevian. 2007. Recurrent neural networks for robust real-world text
classification. In IEEE/WIC/ACM International Conference on Web Intelligence
(WT'07). IEEE, 326-329.

Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, and Riccardo Torlone. 1999.
Database systems: concepts, languages & architectures. Vol. 1. McGraw-Hill
London.

Leif Azzopardi, Mark Girolami, and Keith Van Rijsbergen. 2003. Investigating the
relationship between language model perplexity and IR precision-recall measures.
(2003).

Matthew Broadbent, Daniel King, Sean Baildon, Nektarios Georgalas, and
Nicholas Race. 2015. OpenCache: A software-defined content caching plat-
form. In Proceedings of the 2015 1st IEEE Conference on Network Softwarization
(NetSoft). IEEE, 1-5.

Chien Aun Chan, Ming Yan, Andre F Gygax, Wenwen Li, Li Li, I Chih-Lin,
Jinyao Yan, and Christopher Leckie. 2019. Big Data Driven Predictive Caching at
the Wireless Edge. In 2019 IEEE International Conference on Communications
Workshops (ICC Workshops). IEEE, 1-6.

Zheng Chang, Lei Lei, Zhenyu Zhou, Shiwen Mao, and Tapani Ristaniemi. 2018.
Learn to cache: Machine learning for network edge caching in the big data era.
IEEE Wireless Communications 25, 3 (2018), 28-35.

Surajit Chaudhuri, Vivek Narasayya, and Ravishankar Ramamurthy. 2004. Esti-
mating progress of execution for SQL queries. In Proceedings of the 2004 ACM
SIGMOD international conference on Management of data. ACM, 803-814.
Arthur F Cochcroft Jr. 1998. Method and apparatus for detecting thrashing in a
cache memory. US Patent 5,752,261.

Mieso K Denko and Jun Tian. 2006. Cooperative caching with adaptive prefetch-
ing in mobile ad hoc networks. In 2006 IEEE International Conference on
Wireless and Mobile Computing, Networking and Communications. IEEE, 38—
44.

KR Dittrich, AM Kotz, and JA Miille. 1985. A multilevel approach to design
database systems and its basic mechanisms. In Proc. IEEE COMPINT, Montreal,
Vol. 183.

Klaus R Dittrich, Willi Gotthard, and Peter C Lockemann. 1987. DAMOK-
LES—a database system for software engineering environments. In Advanced
programming environments. Springer, 353-371.

Gunhan Dundar and Kenneth Rose. 1995. The effects of quantization on multilayer
neural networks. IEEE Transactions on Neural Networks 6, 6 (1995), 1446-1451.
Felix A Gers, Jirgen Schmidhuber, and Fred Cummins. 1999. Learning to forget:
Continual prediction with LSTM. (1999).

Parke Godfrey and Jarek Gryz. 1997. Semantic Query Caching for Hetereogeneous
Databases.. In KRDB. 6-1.

Yoav Goldberg and Omer Levy. 2014. word2vec Explained: deriving Mikolov et
al’s negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722
(2014).

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. 6.2. 2.3 softmax units
for multinoulli output distributions. In Deep Learning. MIT Press, 180-184.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

David] Hand and Robert J Till. 2001. A simple generalisation of the area under
the ROC curve for multiple class classification problems. Machine learning 45, 2
(2001), 171-186.

James A Hanley and Barbara] McNeil. 1982. The meaning and use of the area
under a receiver operating characteristic (ROC) curve. Radiology 143, 1 (1982),
29-36.

Olaf Hartig and Ralf Heese. 2007. The SPARQL query graph model for query
optimization. In European Semantic Web Conference. Springer, 564-578.
Lenny K Hon, Leon Kuperman, Louis S Mau, and Alexander Mohelsky. 2001.
Caching dynamic web pages. US Patent 6,185,608.

Jian hua Ran, Na Lv, Ding Zhang, Yuan yuan Ma, and Zhen yong Xie.
2013. On performance of cache policies in named data networking. In
2013 International Conference on Advanced Computer Science and Electronics
Information (ICACSEI 2013). Atlantis Press.

Jin Huang and Charles X Ling. 2005. Using AUC and accuracy in evaluating
learning algorithms. IEEE Transactions on knowledge and Data Engineering 17,
3 (2005), 299-310.

https://docs.redislabs.com/latest/rs/administering/database-operations/eviction-policy/
https://docs.redislabs.com/latest/rs/administering/database-operations/eviction-policy/
https://apacheignite.readme.io/docs/evictions
https://apacheignite.readme.io/docs/evictions
http://www.deeplearningbook.org

CASCON’20, November 10 - 13 2020, Toronto, Canada

[30]

[31]

[32

[33

™
&

[35]

[36

[37

[38]

[39]

[40]

(41

[42]

[43

[44]

[45

[46]

[47]

[48

[49

[50]

[51

[52]

[53

[54]

[56

[57

Frederick Jelinek, Bernard Merialdo, Salim Roukos, and Martin Strauss. 1991. A dy-
namic language model for speech recognition. In Speech and Natural Language:
Proceedings of a Workshop Held at Pacific Grove, California, February 19-22,
1991.

Navin Kabra and David] DeWitt. 1998. Efficient mid-query re-optimization
of sub-optimal query execution plans. In ACM SIGMOD Record, Vol. 27. ACM,
106-117.

Harshad N Kamat and David J Clarke. 2012. Email server with enhanced least
recently used (LRU) cache. US Patent 8,307,036.

Dmitry Khovratovich, Christian Rechberger, and Alexandra Savelieva. 2012. Bi-
cliques for preimages: attacks on Skein-512 and the SHA-2 family. In International
Workshop on Fast Software Encryption. Springer, 244-263.

Doyoung Kim, Won Gi Choi, Hanseung Sung, and Sanghyun Park. 2019. A scal-
able and persistent key-value store using non-volatile memory. In Proceedings
of the 34th ACM/SIGAPP Symposium on Applied Computing. ACM, 464-467.
Gary King and Langche Zeng. 2001. Logistic regression in rare events data.
Political analysis 9, 2 (2001), 137-163.

Ronald E Lange and Richard J Fisher. 1982. Cache memory utilizing selective
clearing and least recently used updating. US Patent 4,322,795.

Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H Noh, Sang Lyul Min, Yookun
Cho, and Chong Sang Kim. 2001. LRFU: A spectrum of policies that subsumes
the least recently used and least frequently used policies. IEEE transactions on
Computers 12 (2001), 1352-1361.

Ken CK Lee, Hong Va Leong, and Antonio Si. 1999. Semantic query
caching in a mobile environment. ACM SIGMOBILE Mobile Computing and
Communications Review 3, 2 (1999), 28-36.

Wai-Xi Liu, Jie Zhang, Zhong-Wei Liang, Ling-Xi Peng, and Jun Cai. 2017. Content
popularity prediction and caching for ICN: A deep learning approach with SDN.
IEEE access 6 (2017), 5075-5089.

Qiong Luo, Jeffrey F Naughton, Rajasekar Krishnamurthy, Pei Cao, and Yunrui Li.
2000. Active query caching for database web servers. In International Workshop
on the World Wide Web and Databases. Springer, 92-104.

Tiago Macedo and Fred Oliveira. 2011. Redis Cookbook: Practical Techniques
for Fast Data Manipulation. " O’Reilly Media, Inc.".

Bhushan Mandhani and Dan Suciu. 2005. Query caching and view selection
for XML databases. In Proceedings of the 31st international conference on Very
large data bases. VLDB Endowment, 469-480.

Michael Martin, Jérg Unbehauen, and Séren Auer. 2010. Improving the perfor-
mance of semantic web applications with SPARQL query caching. In Extended
Semantic Web Conference. Springer, 304-318.

Richard Edward Matick, Jaime H Moreno, and Malcolm Scott Ware. 2006. Cache
with selective least frequently used or most frequently used cache line replace-
ment. US Patent 7,133,971.

Geoffrey J McLachlan, Kim-Anh Do, and Christophe Ambroise. 2005. Analyzing
microarray gene expression data. Vol. 422. John Wiley & Sons.

Nimrod Megiddo and Dharmendra S Modha. 2004. Outperforming LRU with an
adaptive replacement cache algorithm. Computer 37, 4 (2004), 58-65.

Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cernocky, and Sanjeev Khu-
danpur. 2010. Recurrent neural network based language model. In Eleventh
annual conference of the international speech communication association.
Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th international conference on
machine learning (ICML-10). 807-814.

Raghunath Othayoth Nambiar and Meikel Poess. 2006. The making of TPC-DS.
In Proceedings of the 32nd international conference on Very large data bases.
VLDB Endowment, 1049-1058.

Arvind Narayanan, Saurabh Verma, Eman Ramadan, Pariya Babaie, and Zhi-Li
Zhang. 2018. Deepcache: A deep learning based framework for content caching.
In Proceedings of the 2018 Workshop on Network Meets AI & ML. ACM, 48-53.
Sarang Narkhede. 2018. Understanding AUC-ROC Curve. Towards Data Science
26 (2018).

Thomas Neumann and Guido Moerkotte. 2011. Characteristic sets: Accurate
cardinality estimation for RDF queries with multiple joins. In 2011 IEEE 27th
International Conference on Data Engineering. IEEE, 984-994.

Hieu V Nguyen and Li Bai. 2010. Cosine similarity metric learning for face
verification. In Asian conference on computer vision. Springer, 709-720.
Takayuki Osogami. 2010. A fluid limit for a cache algorithm with general request
processes. Advances in Applied Probability 42, 3 (2010), 816-833.

M Tamer Ozsu and Patrick Valduriez. 2011. Principles of distributed database
systems. Springer Science & Business Media.

Meikel Poess, Raghunath Othayoth Nambiar, and David Walrath. 2007. Why you
should run TPC-DS: a workload analysis. In Proceedings of the 33rd international
conference on Very large data bases. VLDB Endowment, 1138-1149.

Meikel Poess, Tilmann Rabl, and Hans-Arno Jacobsen. 2017. Analysis of TPC-DS:
the first standard benchmark for SQL-based big data systems. In Proceedings of
the 2017 Symposium on Cloud Computing. ACM, 573-585.

El Zarif, et al.

[58] D Rachmawati, JT Tarigan, and ABC Ginting. 2018. A comparative study of Mes-

sage Digest 5 (MD5) and SHA256 algorithm. In Journal of Physics: Conference
Series, Vol. 978. IOP Publishing, 012116.

Qun Ren, Margaret H Dunham, and Vijay Kumar. 2003. Semantic caching and
query processing. IEEE transactions on knowledge and data engineering 15, 1
(2003), 192-210.

Xin Rong. 2014. word2vec parameter learning explained. arXiv preprint
arXiv:1411.2738 (2014).

Muhammad Zubair Shafiq, Alex X Liu, and Amir R Khakpour. 2014. Revisit-
ing caching in content delivery networks. In ACM SIGMETRICS Performance
Evaluation Review, Vol. 42. ACM, 567-568.

Junho Shim, Peter Scheuermann, and Radek Vingralek. 1999. Dynamic
caching of query results for decision support systems. In Proceedings. Eleventh
International Conference on Scientific and Statistical Database Management.
IEEE, 254-263.

Cristiana-Stefania Stan, Adrian-Eduard Pandelica, Vlad-Andrei Zamfir, Roxana-
Gabriela Stan, and Catalin Negru. 2019. Apache Spark and Apache Ignite Per-
formance Analysis. In 2019 22nd International Conference on Control Systems
and Computer Science (CSCS). IEEE, 726-733.

Martin Sundermeyer, Ralf Schliiter, and Hermann Ney. 2012. LSTM neu-
ral networks for language modeling. In Thirteenth annual conference of the
international speech communication association.

Daniel Svozil, Vladimir Kvasnicka, and Jiri Pospichal. 1997. Introduction to multi-
layer feed-forward neural networks. Chemometrics and intelligent laboratory
systems 39, 1 (1997), 43-62.

SM Shahrear Tanzil, William Hoiles, and Vikram Krishnamurthy. 2017. Adaptive
scheme for caching YouTube content in a cellular network: Machine learning
approach. Ieee Access 5 (2017), 5870-5881.

Michael J Turmon and Terrence L Fine. 1995. Sample size requirements for
feedforward neural networks. In Advances in Neural Information Processing
Systems. 327-334.

Al Vakali. 2000. LRU-based algorithms for Web cache replacement.
In International conference on electronic commerce and web technologies.
Springer, 409-418.

Stijn Van Dongen and Anton J Enright. 2012. Metric distances derived from
cosine similarity and Pearson and Spearman correlations. arXiv preprint
arXiv:1208.3145 (2012).

Xingxing Wang, LiMin Wang, and Yu Qiao. 2012. A comparative study of en-
coding, pooling and normalization methods for action recognition. In Asian
Conference on Computer Vision. Springer, 572-585.

William E Woods and Arthur Peters. 1982. Hit/miss logic for a cache memory.
US Patent 4,363,095.

Tian Xia, Dacheng Tao, Tao Mei, and Yongdong Zhang. 2010. Multiview spec-
tral embedding. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) 40, 6 (2010), 1438-1446.

Hongliang Yan, Yukang Ding, Peihua Li, Qilong Wang, Yong Xu, and Wangmeng
Zuo. 2017. Mind the class weight bias: Weighted maximum mean discrepancy
for unsupervised domain adaptation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2272-2281.

Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, Ion
Stoica, et al. 2010. Spark: Cluster computing with working sets. HotCloud 10,
10-10 (2010), 95.

Victor Zakhary, Divyakant Agrawal, and Amr El Abbadi. 2017. Caching at the
web scale. Proceedings of the VLDB Endowment 10, 12 (2017), 2002-2005.
Engin Zeydan, Ejder Bastug, Mehdi Bennis, Manhal Abdel Kader, Ilyas Alper
Karatepe, Ahmet Salih Er, and Mérouane Debbah. 2016. Big data caching for
networking: Moving from cloud to edge. IEEE Communications Magazine 54, 9
(2016), 36-42.

Michael Zheludkov, Timur Isachenko, et al. 2017. High Performance in-memory
computing with Apache Ignite. Lulu. com.

Chen Zhong, M Cenk Gursoy, and Senem Velipasalar. 2018. A deep reinforcement
learning-based framework for content caching. In 2018 52nd Annual Conference
on Information Sciences and Systems (CISS). IEEE, 1-6.

Software Evaluation Methodology of Node.js Parallelism under
Variabilities in Scalable Systems

Maria Patrou
maria.patrou@unb.ca
University of New Brunswick
Fredericton, Canada

Kenneth B. Kent
ken@unb.ca
University of New Brunswick
Fredericton, Canada

ABSTRACT

The backbone of Node.js is a single-threaded event loop, so com-
putationally intensive tasks are bound to the performance of a
single core. Modules with different architectures have been built
to provide parallelism and scaling. However, their properties dif-
fer, making them appropriate for different cases. In order to assist
software engineers in choosing the most appropriate module in the
most efficient way, we perform an empirical study to investigate
the modules’ characteristics and functionality, taking into account
system variances. Crucially, we present and apply an evaluation
methodology focusing on four aspects: compute-intensive task ex-
ecution, sharing data, communication and overhead. The results
suggest that instance type (Node.js thread vs. Node.js process) is
not enough to decide the most appropriate one. We find that mod-
ules with the highest performance in most cases can sacrifice other
aspects, such as support and/or functionality and/or performance
in fewer cases, while platform variances play a significant part.

KEYWORDS

Node.js,methodology,parallel,modules,share memory,communicate

ACM Reference Format:

Maria Patrou, Jacob M. Baird, Kenneth B. Kent, and Michael Dawson. 2020.
Software Evaluation Methodology of Node.js Parallelism under Variabili-
ties in Scalable Systems. In Proceedings of 30th International Conference on
Computer Science and Software Engineering (CASCON’20). ACM, New York,
NY, USA, 10 pages.

1 INTRODUCTION

An increasing number of applications are built with Node.js [23],
a framework for asynchronous I/O, event-driven and server-side
JavaScript. Examples include web applications and web servers that
take advantage of its asynchronous and highly scalable nature. How-
ever, long-running tasks might arise and become a performance
bottleneck. As in other programming frameworks/languages, we
have to find efficient ways to execute compute-intensive tasks.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CASCON’20, November 10—13, 2020, Toronto, Canada

© 2020 Copyright held by the owner/author(s).

103

Jacob M. Baird
jbaird2@unb.ca
University of New Brunswick
Fredericton, Canada

Michael Dawson
michael_dawson@ca.ibm.com
IBM Node.js
Ottawa, Canada

Node.js, being mostly single-threaded, is not preferred for this type
of computation. Fortunately, the framework supports modules that
create new instances in which it can offload a task instead of run-
ning it in the main thread and blocking the event loop. The major
categories include spawning either threads or processes.

There is much discussion on which technique should be pre-
ferred over another to achieve optimal performance. In Node.js,
there are modules that have implemented Node.js processes and
Node.js threads to achieve parallelism. In every case, their internal
infrastructure and functionality have several (dis)similarities.

Expanding on our previous work [30], we perform an empirical
study on thread and process implementations in Node.js by col-
lecting and analyzing the results from our performance tool. We
survey their architectures and explore their support and functional-
ity though performance analysis that leads to better understanding
of the modules and their capabilities. We formulate a methodol-
ogy to evaluate them with benchmarks that describe: compute-
intensive task execution by each worker instance, sharing infor-
mation between parent and child instances and communication
through two different message exchange patterns. In our method-
ology we present metrics for every aspect and include platform
variances, as we scale the Node.js instances and their workload on
a server with dynamic voltage and frequency scaling (DVEFS). This
study aims to provide further details of the Node.js modules, includ-
ing a newer module, and a deeper analysis of their performance
than the previous work. Our contributions are listed as follows:

(1) We survey Node.js modules that introduce parallelism. We
choose modules that implement Node.js threads and Node.js pro-
cesses and present their architectures and functionalities. (2) We
provide a complete evaluation methodology. For choosing and uti-
lizing a module, four main points are assessed (with metrics): over-
head, task execution, sharing memory and communication. (3) We
identify software and hardware variabilities. DVFS, evolution of
Node.js/V8 between two different versions and execution environ-
ment are explored to reveal their impact on module performance.
(4) We discuss observations and recommendations on module per-
formance and utilization under scalable conditions.

2 BACKGROUND

The functionality of the hardware and software platform variabili-
ties that we identified is described below. These components should
affect the performance and scalability.

CASCON’20, November 10-13, 2020, Toronto, Canada

2.1 Hardware variability

The speed at which the instructions are executed is measured in
clock cycles per second (CPU frequency). Modern CPUs can support
DVES in which the clock frequency and/or voltage of the processor
changes for efficiency and energy consumption. Various governors,
that decide the frequency and voltage values, exist. Intel’s P-state
driver has governors with P-states (which represent several fre-
quency and voltage points): “performance” and “powersave”. In the
first case, the driver selects the maximum available P-states (high
frequencies) and in the latter, the choice is made based on CPU
utilization either relative to the usage or with a rapid increase as the
workload increases. In cases that the processors support hardware-
managed P-states (HWP), the processors select the P-states and
the above algorithms provide indications based on the governor
policy [4, 40].

2.2 Software variability

Node.js is a server-side JavaScript framework with asynchronous
1/0, event-driven logic [31]. The event-based model depends on the
concept of the event loop, achieved through the libuv 2, 20] library.
The library is responsible for the event loop and thread pool func-
tionality. The main (event loop) thread initializes the application
and manages all requests and their responses. It maintains a queue
of events and executes their callbacks. I/O network operations are
executed through non-blocking sockets, while others, such as the
file system, DNS functions, etc. are executed in a thread pool [2, 22].

Node.js runs on top of Google’s V8 JavaScript engine [3], which is
responsible for transforming JavaScript to machine code and allocat-
ing and deallocating memory. Internally, V8 uses an isolate structure,
a private instance of V8 into which threads can enter one at the time
(single-threaded). Multiple isolates can exist in multiple threads,
each maintaining its own private heap for object allocations [36].
The context structure represents an environment in which unre-
lated JavaScript code is executed on a single V8 instance [37]. In
V8, heap objects are collected though frequent garbage collection
(GC) operations that free unused memory. The heap is split into
two segments: nursery and old generation. There are two types of
collectors: Scavenge that collects dead objects from the nursery and
Mark-Sweep-Compact from the full heap. Scavenge creates small
pauses in application execution and it happens frequently [19, 34].
However, GC improvements in v6.2 [34] replace Scavenge with
a parallel Scavenge and add a parallel Mark-Evacuate algorithm.
Node.js v10 [35] adds and enables concurrent marking.

3 RELATED WORK

Research has been conducted on performance evaluation of paral-
lelism, Node.js and V8.

Node.js and V8 Zhu et al. presented an analysis of server-side
JavaScript focused on the event-driven nature of Node.js [42]. They
used Node.js and SPEC CPU 2006 applications and calculated in-
struction, cache and event metrics to present implications of the pro-
gramming model and instruction cache optimizations. Nkenyereye
et al. used throughput, response time and error rate to evaluate the
performance of a healthcare hub server [29]. The focus was on the

104

M. Patrou, J. M. Baird, K. B. Kent and M. Dawson

concurrent tasks as identified in the architecture of a remote health-
care monitoring system. They compared the single-threaded event-
looped Node.js against a multi-threaded approach using Apache
Sling and calculated their metrics using performance data from
JMeter. Tiwari et al. studied architectural execution characteristics
of Sunspider and Google’s V8 JavaScript benchmarks [32]. They
measured hardware performance counters to analyze and character-
ize the benchmarks. They also applied statistical techniques using
PCA and clustering algorithms on performance metrics to identify
similarities between them. Recent studies include the creation of a
cloud-based benchmarking framework in Node.js to measure and
present scaling performance and regression analysis [41].

Exploring Parallelism Namiot et al. described some JavaScript
parallel programming models, Webworkers, WebCL and concurrent
frameworks such as River Tail, JAWS and Worker]S [28]. Vetter et
al. evaluated the performance of eight scientific applications [39].
They presented computational, communication and scaling analysis
using different tools. Vetter et al. performed a scalability analysis
using a correlation coefficient and a rank transformation on the
data [38]. More specifically, they evaluated the communication
operations of applications from the NAS Parallel Suite and ASCI
Compact Benchmarks to identify scaling issues.

Our previous study focused on the performance of modules
in Node.js v9.7.1 under a compute-intensive task (Monte Carlo 7«
estimation) looking into similarities and differences in performance
terms [30]. We expand our methodology (benchmarks, metrics, test
cases), move to a later Node.js version, and perform experiments
for two Node.js versions and the modules that achieve parallelism
(referred to as parallel modules) they support. This paper provides
a survey on parallel modules and a complete methodology that
focuses on the modules’ infrastructure, performance under micro-
benchmarks and factors that affect their performance. To the best of
our knowledge, this analysis has not been found before in literature.

4 HYPOTHESES & RESEARCH OBJECTIVES

We identify and evaluate parallel Node.js modules under software
and hardware variabilities. First, we survey representative modules.
Second, we assess them and the properties which can impact their
behavior. Our goal is to stress-test the modules on core operations
that we identify as important factors for choosing a module and
its functions using the micro-tasks. Considering the impact of the
underlying environment and Node.js variances, we investigate the
following hypotheses: (H1) Multi-thread modules will have lower
overhead and higher performance than multi-process ones. The
instance type will be the most important factor for determining their
performance. (H2) The Node.js version upgrade will affect positively
and evenly all the modules. All modules will either experience better
or similar performance on later versions. (H3) The environment
will affect the modules. DVFS will affect the scalability of modules.
We expect to see cases with higher computation to be faster than
others with lower workloads. Also, an impact on task execution
when moving from a bare metal host to a virtualized environment
is anticipated. (H4) Passing an argument during worker spawning
will be the fastest way to share information. Sending a message
and using a shared memory module will follow for small data,
while for large data the opposite sequence will be more efficient.

Software Evaluation Methodology of Node.js Parallelism under Variabilities

The shared memory modules will have the highest overhead. (H5)
Communications patterns will affect the system responsiveness
with significant differences. The format of message exchange will
show that sending one large message is more efficient that sending
smaller ones with the data split.

5 SURVEYING PARALLELISM IN NODE.JS

Node.js enables the import of any file or organized folder as a
module [1] in order to access its functions. Modules that spawn
instances face the challenge of exposing parallelism in an envi-
ronment that is mainly single-threaded. Node.js implements an
event-based infrastructure in which the events are orchestrated on
the single-threaded event loop and the embedded V8. The runtime
exposes a V8 instance (isolate) which is meant to be used by one
thread at a time and a context that is the execution environment
of a single instance. Thus, thread implementations do not share
the same V8 environment, including the heap (aka objects) and
they also need to add and define a structure that supports several
threads and the way they fit in the Node.js architecture. However,
Node.js provides the concept of NodePlatform, created per process,
that can point to multiple isolates and provide libuv’s background
threads [16]. In our opinion, the creation of Node.js processes ben-
efits more from the Node.js/V8 architecture, since by default they
share nothing.

The investigation of modules with different implementations
for achieving parallelism leads us to five modules. By reading
their documentation and code, we survey and collect two process-
based modules: Child Process, Cluster and three thread-based mod-
ules: WebWorker-Threads, Napa.js and Worker Threads. The multi-
process modules are found throughout the Node.js versions, while
WebWorker-Threads and Napa.js were not supported in Node.js
v12.1.0 in the duration of the study. However, the latest addition is
the Worker Threads that appears in later versions. Argument pass-
ing, message sending and shared memory modules are supported
by Child Process, Cluster and Worker Threads, that are part of the
Node.js core. While Napa.js does not support message passing and
WebWorker-Threads supports only message passing. Every module
has its own architecture and API:

Napa.js is a multi-threaded JavaScript implementation, used as
a Node.js module or standalone. It creates symmetrical worker-
threads, which share the same configuration settings, defined as
a zone. The module allows for the creation of multiple zones in
the same application. A napa zone allows the creation of multiple
threads, using a JS thread pool in which they have their own V8
isolates and thus, private heaps [9]. The napa zone does not use the
libuv APIs within the worker threads; the library is exposed only
through the node zone for one worker [6, 7]. During the initializa-
tion of the zone, each worker is initialized using the zone settings
with a worker id. In this step, each worker loads the appropriate
modules/libraries, too. The workers are initialized sequentially and
they wrap std::threads. The threads share memory through Trans-
portable types, including JavaScript primitive and built-in types
such as SharedArrayBuffer (SAB) and ArrayBuffer [5]. The design
for making structured data transportable such as SAB is based on
solutions that use externalized memory to store/share memory (for
SAB objects) and V8’s object (de)/serialization system [8].

105

CASCON’20, November 10-13, 2020, Toronto, Canada

WebWorker-Threads create JavaScript threads (following the
W3C Web Worker API) that run in the background with the main
thread [13]. The module supports the creation of thread pools and
individual workers. In contrast to Napa.js, the architecture relies on
the usage of the libuv library. It spawns native threads (uv_thread_t)
that execute jobs using their shared queues and send the jobs’
callbacks back to the event loop. Each thread has its own isolate
and thus its own heap [14]. The worker threads share information
from the main thread by sending messages. A message is serialized
and added as a job into the thread’s queue for execution [15]. Finally,
the module includes parts of the code written in LiveScript that
are transformed to JavaScript minified versions with hexadecimal
representations of the ASCII characters [21].

Worker Threads is the most recent built-in Node.js module
that allows for parallel task execution. It creates JavaScript threads
that support most Node.js APIs [18]. A worker thread is an Even-
tEmitter object, thus it triggers events with listeners to be called
upon emission [17]. During the creation of a worker thread, the
parent process’s environment is cloned, a new MessageChannel
is created (for asynchronous communications between parent and
child worker), internal modules are loaded, its script (task) is passed
as a message and the standard input/output streams are initialized.
Every worker thread wraps a pthread, maintains its own V8 in-
stance, Node.js environment and event loop, but shares resources
with the other threads, such as the thread pool [26]. The informa-
tion between main and worker threads is passed during the creation
of a thread as an argument (workerData) or by sending a message
with the default or a custom MessageChannel (the default global
one is used in the experiments). In both cases, the HTML cloning
algorithm is used to copy the data using a message event. Also,
Worker Threads support SharedArrayBuffers for sharing data that
are based on V8’s APIs. Finally, the workers can share environ-
ment variables with the main thread by setting the special flag:
worker.SHARE_ENV [138].

Child Process spawns a new Node.js process. The function
child_process.fork spawns a process asynchronously and invokes a
module for IPC communication [11]. More specifically, it creates
a new ChildProcess object, an EventEmitter object, with listeners
attached. During creation of the object, the parent process creates
the IPC channel, initializes the file descriptors for the standard
I/O and passes them as an argument, along with the rest of the
environment variables, such as the executable script and args, to
the child process. Inter-process communication between the parent
and the child process is achieved either through Domain sockets in
Unix-based environments or with Named Pipes in Windows [20].
The new Node.js instance/executable is spawned through libuv’s
uv_spawn (that calls execvp) and thus it has its own environment,
event loop [20], V8 instance and private heap. By default, the pro-
cesses do not share memory, but this can be achieved through
shared memory segments. The shm-typed-array module (used in
the experiments) enables sharing memory between Node.js pro-
cesses through the IPC mechanism (Unix’s shm library) for Unix
systems [33].

Cluster creates processes that share server ports. A new process
is spawned using the child_process.fork API internally [12]. First,
the settings of the cluster module are initialized, including the exe-
cutable script, arguments, flags and the scheduling policy is set to

CASCON’20, November 10-13, 2020, Toronto, Canada

default round-robin. Internally, the module calls the child_process’s
API for each child process and passes the appropriate settings for
the cluster. By default, a cluster process will execute the parent’s
script from the beginning and it is the developer’s responsibility
to differentiate the execution between master and slave threads.
Nevertheless, the module enables the assignment/execution of a
separate script through the cluster.setupMaster() API, which was
used in the experiments for calculating the metrics related to task
execution to reduce the overhead of the child processes.

Our survey reveals that the above modules have some charac-
teristics in common. Each thread/process has its own isolate and
thus its own heap. However, the modules can share information
regardless of the instance type (thread or process) using different
libraries. The only restriction is whether modules support certain
ways of sharing and exchanging information.

6 EVALUATING NODE.JS PARALLELISM

In our methodology, we identify four main aspects for testing the
modules’ performance, we design our benchmark suite based on
them and evaluate the modules in a wide range of loads.

6.1 Module Characteristics & Variabilities

We believe that, the way the modules affect the system and their
performance on task execution, sharing information and message
exchange are the most important characteristics to make a decision
on a module and its functions.

First, the overhead from loading the module and spawning the
workers and the sharing memory techniques, is explored. Appli-
cations that heavily depend on fast execution, such as animations,
would consider when and how to spawn a new worker, to avoid
significant slowdowns. Also, the overhead caused by the workers,
can be a factor for determing the most suitable number.

Regarding task execution, workers are expected to execute a
compute-intensive task. Thus, the selection depends a lot on their
performance on this task. At the same time, they might require
sharing information with the main thread. The performance of the
various mechanisms gives an insight on when and how to use each
one. Finally, message exchange, reveals the communication impact
on the system. Applications that need frequent communication
among the main program and the helper instances, should consider
the size and number of messages and the communication type.

However, the deployment environment affects the modules, as
well. It is not guaranteed that the production environment will
always be the same as the development one. Hardware discrep-
ancies, like DVFS affect the frequency of the CPUs and, thus the
module performance. Moving from a bare-metal host execution
environment to a virtualized one, can cause a further impact on
task execution. Even the Node.js version upgrade can have side
effects. To this end, our trials and metrics take into consideration
the module patterns and the influence from their environment.

6.2 Benchmark suite

The following benchmarks are used to evaluate the modules:
Task execution. The benchmark simulates cases in which work-

ers are called to execute a compute-intensive task and return a result

to the main program. The Monte Carlo 7 estimation algorithm is

106

M. Patrou, J. M. Baird, K. B. Kent and M. Dawson

used. We took the implementation from the Napa.js benchmarks
suite [10] and adjusted it to our trials. Each worker executes the
algorithm independently by performing n iterations and sends back
its calculated value through a message or a promise (for Napa.js).
When they have finished, the main program returns a callback with
the calculated 7 value to continue the execution of the application
and the aggregated value is printed.

Sharing information. The modules provide different APIs to
share data from the parent to the child. Argument passing dur-
ing spawning the worker, message sending and shared memory
techniques are tested, based on the support of each module. Regard-
ing the shared memory techniques (Shared ArrayBuffer-SAB for
multi-thread modules and shm-typed-array—SHM for multi-process
modules), the objects are passed as an argument during the forking
process. In all cases, the parent instance is notified by the worker
with an event emission: message or promise that the worker has
successfully received the data. We examine each technique for each
module with two benchmarks that differentiate the range of random
integers: any random integer and integers from zero to nine.

Communication cost. Two different patterns for message ex-
changing between parent and child instances are tested. In the
Batch pattern, the parent sends a message to all workers at the
same time. In the beginning, the parent creates a random array.
The workers receive the array, swap the first element with the last
and send it back. The main thread/process resends it to all of them,
after it receives the array from all the workers and swaps the two
elements. In the Pair pattern, the main thread resends the array
immediately to the worker that it received it from.

The benchmarks are written with each module’s API and con-
figured through scripts to change the number of workers and the
loads. Each benchmark category/module is configured in a separate
Docker container [27], with the exception of the sequential case
that is in the same container as the Child Process. Each container
has its own Dockerfile with the appropriate libraries and modules.

6.3 Experimental Design & Metrics

We choose the number of workers based on the number of CPUs
(eight) on the machine. We scale them based on the number of CPUs
used by the workers (one, four, eight and 16) and the number of
CPUs used by the workers and the main thread (three, seven and 15)
to reach the number of cores (four), CPUs (eight) and double CPUs
(16). The trials from task execution and communication use the
above configurations, while the experiments that focus on memory
scale the workers as follows: one, four, eight and 16. The workloads
for every experiment scale in a wide range of loads to simulate small,
medium and large ones executed by each worker. We perform 30
runs for every case (with the exception of shared memory case with
random numbers with Child Process in version 12) and present the
average and standard deviation bars.

On task execution, we measure and reveal variances that impact
task execution, including Node.js version and compiler and DVFS.
Execution time, speedup, CPU usage/frequency and GC patterns
are presented to decide on speed, resource consumption and heap
utilization. To compare the shared memory techniques, we measure
the time spent spawning each worker until all workers have notified
the parent. On communication, we measure execution time and

Software Evaluation Methodology of Node.js Parallelism under Variabilities

CPU usage/frequency to decide speed and resource utilization. The
execution time does not include the overhead of spawning the
workers to show the time spent on message exchange. Regarding
overhead, we use the benchmarks from task execution and sharing
memory with minimum workloads and we present the speedups
against the sequential case.

7 EXPERIMENTAL EVALUATION

The multi-process modules: Child Process (CP), Cluster (C) and
multi-thread modules: WebWorker-Threads (WT), Napa.js (N) and
Worker Threads (W) on the Node.js versions: 9.7.1 (V8 6.2.414.46)
and 12.1.0 (V8 7.4.288.21) and their supporting techniques are tested.
We ran our experiments under Ubuntu 16.04.4 LTS, with 8GB RAM,
four Intel i7-2600 cores and two hardware threads per core. It sup-
ports frequency scaling with minimum and maximum: 1.6GHz and
3.8GHz in “powersave” governor with intel_pstate active mode. We
also created a virtual machine using VBoxManage and ran Ubuntu
16.04 with 8CPUs and 8GB of RAM and KVM virtualization.

7.1 Overhead

First, we investigate the speedup of the modules in Node.js 12.1.0
and Node.js 9.7.1 with the different techniques for sharing informa-
tion. In most cases, the argument passing technique has the least
overhead followed by the message passing and the shared memory
solutions. The results are not surprising as passing an argument
while creating a worker instance does not require any additional
steps. However, the difference in execution time is minor. In fact,
Napa.js shows similar results between argument passing and shared
memory with one and eight workers. Also, Worker Threads in v12
show cases where the three techniques overlap including their stan-
dard deviation. Since the difference is minor, no one technique has
a big overhead difference.

Figures 1a and 1b reveal the cost of spawning a new worker
instance for the the Monte Carlo 7 estimation with one point. The
results reveal that speedup increases as workers increase and it
starts dropping at 15 workers. Considering that each worker has
only one iteration to estimate the 7 value, the graph shows that it
is faster to spawn more instances than one, especially in Node.js v9.
In fact, WebWorker-Threads have speedup values higher than one
(better performance than the sequential program) in most cases.
While in Node.js v12, the overhead of spawning three, four, seven
and eight workers is similar. Spawning four workers produces the
highest speedup among the above and the most similar speedups
are observed in cases with seven and eight workers.

Comparing these results with Figures 1c and 1d in which the
server is set to: minimum frequency same as maximum (3.8 GHz)
and to “performance” governor, to reduce the changes in CPU
frequency, the speedups have the highest value with one worker
and decrease as the workers increase. They are always less than
one, while the standard deviations are smaller with more consistent
results. Thus, DVES affects the scalability of the modules in this
machine. The CPU frequency changes to benefit the spawning of
more than one worker (process or thread) with minimum work
to execute, as long as they are less than or equal to the machine’s
hardware threads. In most cases, the highest speedups appear with

107

CASCON’20, November 10-13, 2020, Toronto, Canada

three and four workers, in which the turbo boost can be activated
with speed at least 3.5GHz.

7.2 Task execution

In this trial, we measure the task execution by each worker and
report the variances that affected it.

7.2.1 Run times. Figures 2a and 2b present the speedups as the
workload (iterations) per worker increases in the x-axis and the
workers increase in the y-axis. Napa.js and WebWorker-Threads
show higher speedups than Child Process and Cluster. WebWorker-
Threads have the highest speedup, while Napa.js follows as the
workload increases. For small workloads, Napa.js has the lowest
speedup. However, by excluding the step of spawning JavaScript
threads during the “zone” creation, threads from Napa.js produce
speedups closer to WebWorker-Threads for every workload. Fo-
cusing on the modules’ speedups of task execution, we measured
the execution times starting from the assignment of the tasks to
the workers until all workers have returned their values to the
main thread/process. Napa.js separates the zone creation with the
task assignment to each worker and performs it in two steps. The
zone creation appears to have such an overhead, that it can change
the trend. Napa.js with the zone overhead has the lowest speedup
in small workloads, while without it, it has the second best. In
Node.js v12, Cluster and Child Process have higher speedups than
the Worker Threads. Worker Threads have closer speedups to Clus-
ter, while Child Process outperforms both.

Focusing on the modules’ execution time, the data shows that
they decrease their real execution time as the workers increase from
one to three and four workers for workloads up to 4M iterations.
The runtimes remain lower in the case of seven and eight workers
for the same or fewer points and increase and surpass the single-
worker runtime for 15 and 16 workers. These results along with the
data on overhead show that in this machine, it is faster to spawn
more than one (and less than 15 workers) to perform a small task.

The comparison of the sequential case, the Child Process and
Cluster modules between Node.js v9 and Node.js v12, reveals that
their execution time differs and improves in the latter version. The
comparison of their ratios show that they perform better in Node.js
v12.In fact, the sequential case and the Child Process module benefit
more as the workload increases. On the other hand, the Cluster
module benefits in small workloads and then runs with the same
speed for workloads more than 2-107 and every number of workers.
Overall, their execution time in Node.js v12 can be more than 1.5
times faster than in Node.js v9, with the sequential case reaching
the v9/v12 ratio 2.48 and Child Process 2.46.

Comparing the performance of multi-process modules in both
versions, the results show that in Node.js v9, Cluster and Child
Process have almost identical speedups, while in Node.js v12, Child
Process outperforms Cluster. The latter is surprising, given the
fact that Cluster encapsulates some of Child Process’s function-
ality. The investigation on Node.js flags coming from V8, reveals
performance difference with default settings against the —no-opt
flag which disables any optimizations happening from V8’s Just-
In-Time compiler, called TurboFan [25]. There is a performance
difference with default settings that causes Child Process to be more
than twice as fast as Cluster and it disappears when the compiler

CASCON’20, November 10-13, 2020, Toronto, Canada

Real Execution Time Speedups of Node.js
v12 for 1 point on Bare-Metal Host

Real Execution Time Speedups of Node.js
v9 for 1 point on Bare-Metal Host

N - Napa.js
WT - WebWorker-Threads
C-Cluster

CP - Child Process

Speedup

Speedup

0.4

0.2

0

£ o a o a
= & 5] B

B 1 worker 3 workers B4 workers @7 workers |1 worker 3workers B4 workers @7 workers

@8 workers E15workers B 16 workers @8 workers E15workers @ 16 workers

(a) Node.js v9 (b) Node.js v12

Speedup

|1 worker
&8 workers

M. Patrou, J. M. Baird, K. B. Kent and M. Dawson

Real Execution Time Speedups of Node.js
v12 for 1 point on Bare-Metal Host

Real Execution Time Speedups of Node.js

v9 for 1 point on Bare-Metal Host 0.6

0.5

Vorker-Threads
C-Cluster
CP - Child Process

0.2

0.1

0

£ o a o a
= [s] & 2

D3 workers B4 workers @7 workers B 1 worker 3 workers B4 workers

@15 workers B 16 workers 37 workers 8 workers E15 workers

(c) Node.js v9 (d) Node.js v12

Figure 1: Speedup for one point - Monte Carlo 7 estimation - CPU Frequency set to min=max in: (c) and (d)

is disabled. The performance difference increases as the workload
per worker increases indicating a connection with the iterations
for the & value estimation, in which two numbers are created with
the Math library. Thus, this can be connected with the way the
compiler optimizes this code in each module for this server.

The investigation on the virtualized environment shows that
the speedups from the experiments on the virtual machine fol-
low very similar trends as in the bare-metal host case. Running a
compute-intensive task in a host versus in a virtualized environment
on the same host does not affect the execution times of the paral-
lelization modules unevenly for large workloads and many workers.
Overall, the performance is either the same or worse in a virtual ma-
chine for every module. However, Napa.js and WebWorker-Threads
are affected more than Cluster and Child Process by the virtualized
environment. WebWorker-Threads and Napa.js reduce their overall
speedup in small workloads significantly. In fact, multi-process
modules show better speedups than Napa.js in these cases, while
Napa.js shows slightly better speedup on the bare-metal host. Also,
the ratio of the modules’ real execution time in the VM over the host
reveals cases that the multi-thread modules experience slowdowns
of 2.16x for Napa.js and 2.46x for WebWorker-Threads in the VM,
while multi-process show up to 1.34. WebWorker-Threads show the
fastest speedup and Napa.js follows in large workloads. Similarly,
in Node.js v12, Worker Threads experience higher slowdowns (up
to 2.31) than the Cluster (up to 1.5) and Child Process (1.54) mod-
ules. The trends do not change—Child Process shows the fastest
speedup. Overall, the performance difference occurs in small and
medium workloads and it decreases as the workloads increase. Such
a difference is significant to highlight, in case an application with
a multi-thread module is deployed on a virtualized environment.
The transition from a bare metal host to a virtualized environment
should have a bigger impact on a multi-thread solution than on a
multi-process one for a compute-intensive task.

108

7.2.2 CPU Metrics. Napa.js and WebWorker-Threads use the least
CPU. Multi-process modules have very similar CPU usage and fre-
quency in Node.js v9. In small workloads, the CPU frequency does
not always increase as workers increase. The frequency increases
rapidly from one worker to three and four workers and then de-
creases with values either the same with a single worker or even
higher. Also, WebWorker-Threads uses lower frequency in 2 - 10°
than in 4 - 10® workloads.

In Node.js v12, the trends are not that clear. Worker Threads use
less CPU than Child Process and Cluster. As the workloads increase,
the CPU usage of the three modules converges in large workloads.
Worker Threads have the lowest CPU frequency. In small workloads,
Child Process decreases the frequency as workers increase, while
as workloads increase the values are closer together regardless of
the number of workers. Similarly in Cluster and Worker Threads,
there is no trend that frequency increases or decreases based on
the number of workers. However, when the workload per worker
is large, it reaches a high value and does not change.

Overall, the multi-thread modules use less CPU and lower fre-
quency for low and medium workloads. At 2 - 107 points, CPU
frequency stabilizes at 3.5GHz for all parallelization modules and
it does not increase with all modules running on similar CPU fre-
quency. The frequency decreases slightly as workers increase with
ranges from 3.69GHZ to 3.47GHz. However, the CPU usage in-
creases steadily as workers increase.

7.2.3 Memory Management - Garbage Collection. In Node.js v9,
Sequential, Napa.js, Cluster and Child Process perform almost the
same number of GCs especially as the workloads increase. They
also produce almost the same number of heap garbage collected
objects, WebWorker-Threads included. More specifically, the se-
quential case has the fewest heap allocations and number of GCs
in lower loads and Napa.js the highest among these four cases.
This result suggests a higher memory footprint in Napa.js. On the
other hand, WebWorker-Threads has the most GCs, almost twice

Software Evaluation Methodology of Node.js Parallelism under Variabilities

Speedups of Node.js v9

N - Napa.js
WT - WebWorker-Threads
C- Cluster

CP - Child Process

=
014

[SEENTFN

ZFoao ZEF0a U& ZEU& zgug
2%10° 4%10° 2% 10° 4%10° 2107 4107 2x10° 4108
B 1 worker 3 workers B4 workers @7 workers

8 workers B 15 workers 16 workers

(a) Node.js v9

Speedups of Node.js v12
26

24

C- Cluster
CP - Child Process
W - Worker Threads

22

N
o

R~
NOh O ®

Cumulative Speedup

=
o

4%10° 2x10° 4% 10° 2%107 4% 107 2108
B 1 worker 3 workers B4 workers 37 workers
8 workers & 15 workers @ 16 workers

(b) Node.js v12

Figure 2: Monte Carlo Speedups on Bare-Metal Host

more in some cases. The results could be explained by the different
starting heap sizes for each technique. Napa.js threads have 9.1
MB, Sequential, Cluster and Child Process processes have 3.4 and
WebWorker-Threads have 2.6 MB.

In Node.js v12, the trend is similar. In low workloads, the sequen-
tial case does the fewest GCs, while the parallelization modules
perform almost the same number of GCs for every workload and
approach the sequential case as the workloads increase. The Worker
Threads start with heap size 2.19MB, the Cluster and Child Process
processes start with 2.18MB and the sequential 2.19MB. Investiga-
tion on the number of GCs and the heap allocations until the last GC
show that among the sequential, Cluster and Child Process isolates,

109

CASCON’20, November 10-13, 2020, Toronto, Canada

the number of GCs are similar in both Node.js/V8 versions, with
v12 producing fewer GCs as the workloads increase. Regarding
heap usage, the results are similar, but v12 modules have fewer
heap allocations for small workloads. In every case, the number of
GCs and heap allocations are consistent revealing that they can be
predicted using the information for one isolate and applying when
scaling out.

Finally, we measure the duration of all GCs using the logs that
show the GC pause [24] with the user and system execution time
of each technique. The ratio shows the percentage of time spent in
GC and reveals the time spent on freeing unused memory during
application execution. For up to three workers, Napa.js spends the
most time in GCs and WebWorker-Threads spends the least. As the
workers and load increase, Napa.js approaches the performance
of Cluster and Child Process, which spend the least time in GC.
More specifically, as workers increase, the multi-process techniques
spend the least time for small and medium loads. When they reach
15 and 16 workers, they spend the least GC% time for tiny loads and
then increase at a high rate as the load increases. They reach up to
100% GC duration, meaning that there is always a GC happening
throughout the whole application duration. On the other hand,
Sequential has the lowest GC% duration. This shows that most of the
application time is spent in executing the task rather than freeing
up the heap. In Node.js v12, the modules show similar percentages
in GC% duration. In cases with large workloads, Worker Threads
have the lowest percentage, while in small workloads Cluster and
Child Process have lower. For all modules in both versions the
GC% duration is less than 6% up to eight workers. The percentages
increase at 15 and 16 workers.

7.3 Sharing Information

The execution time of the modules sharing an array among workers
that contains random integers with a random number of digits is
measured. For four workers and small arrays, argument passing is
the fastest technique among the modules. As the arrays increase,
Napa.js performs better with shared memory, while Cluster and
Child Process, with argument or message passing. For more work-
ers, argument passing is still faster, except for Napa.js where the
shared memory technique is faster for large arrays. However, the
difference in execution time among each technique for every mod-
ule (except for Napa.js with large arrays) is minor, regardless of
the number of workers and the size of the array. In Node.js v12,
argument passing shows the least execution time for small arrays.
As the size of the arrays increases the shared memory technique
proves to be more efficient. A similar outcome happens for 16 work-
ers. WebWorker-Threads shows the least execution time followed
by Napa.js in Node.js v9 and Child Process and Cluster show the
least in Node.js v12.

The results show that each technique (with the exception of
Napa.js) does not increase substantially as the array increases. The
execution time increases more as more workers are spawned and
share the array. Also, there are a few cases that sending a message
is faster than the other two methods. If all of them are supported
the usual order is: argument passing, message sending and shared
memory. Shared memory is faster in cases that large arrays are

CASCON’20, November 10-13, 2020, Toronto, Canada

800
Batch message communication Execution times Node.js v9

W1 worker B3 workers @4 workers &7 workers B8 workers B 15 workers B 16 workers
i

h 1 i

mE | T M e

600 g FHy A +

b Egsl
H bl il

700

H

FHOTH LW EHOT

execution times (msec)

vaE vak vak
Oz Oz Oz

va

o=
piml piml0 plm20 ploml plOmI0 plom20 ploOml plOOMIO pIOOM20 pLOCOMI PLOOMIO pLOOOM20 pI0,000mL
(a) Batch
800
Pair message communication Execution times Node.js v9
700 =
mh T+ oo
my [+ [de [1 e
600 ik Raeal H gk Bl Ll
M b [HE b 5T H
so0 | G e HH st

execution times
5
8
3

w
8
3

piml pimi0 pim0 plomi pIOM0 pl00MI plOOMI0 plOOM20 pLOOOMI pLOOOMI0 PLO0OM20 P10,000mL

p1om10

(b) Pair

Figure 3: Batch-Pair Patterns Execution times Node.js v9

shared. However, the difference is minor in most cases, with the
exception of Napa.js for large arrays.

The modules are, also, tested with arrays that hold integers with
one digit (0-9). Larger arrays are used to evaluate the performance
of each technique, too. Here, the trends are very similar to the
previous benchmark. However, Cluster and Child Process receive
the data in argument passing technique as strings. In this case, there
appears to be a limit on the number of integers shared among the
worker processes. Arrays with size 10° and 10° cannot be passed
as arguments.

Overall, argument passing appears to be a fast way to share data.
In cases with large arrays, the shared memory technique creates a
big performance gap, especially in multi-process implementations,
and shows to be the fastest solution. Message passing has the least
execution time in very few cases.

7.4 Communication Cost

Figures 3 and 4 present the execution time for Batch and Pair pat-
terns for cases up to p10, 000m1. The x-axis shows the array size

110

M. Patrou, J. M. Baird, K. B. Kent and M. Dawson

Batch message communication Execution times Node.js v12

B4workers EB7 workers

B 16 workers

= 1 worker =3 workers

B8 workers @15 workers

600

400

execution times

200

100

vz

pimi0

vz

pim20

vz

p1om1

vz

p10m10

vz

p10m20

vz

p100m1

vz

p100m10

vz

p100m20

vz

p1,000m1

Vgz Vgz Vgz

p1000MI0 p1,000m20 p10,000m1

(a) Batch

Pair message communication Execution times Node.js v12

execution times (msec)

haE

p1m10

©°5z vg=

p1m20

Cgz

p10m10

vg=z

p10m20

CEE Yz 95z Y83

p100m1

o

haE

PLO0OMI0 p1,000m20 p10,000m1

p1om1 pI00MI0 pI00M20 p1,000m1

(b) Pair

Figure 4: Batch-Pair Patterns Execution times Node.js v12

with random-sized integers-points (pn) followed by the number of
messages sent from the parent to each worker (mk).

The modules in Node.js v9 have very similar execution time
for all cases between p1m1 and p100m20. In both patterns, the trends
are similar. The execution time increases slightly as the number of
messages increases, while there is no significant difference in the
performance as the message size is increased. Even though, the num-
ber of messages exchanged affects the performance more than the
number of points sent, within each message, the gap remains small.
As the workers increase, WebWorker-Threads increase their execu-
tion time. Child Process and Cluster have the shortest duration with
three and four workers and the execution time increases gradually
as workers increase. Overall, WebWorker-Threads have the least
runtime and that creates a big performance gap with Cluster and
Child Process. However, as the array size increases, WebWorker-
Threads increase the execution time as such that exceeds the multi-
process modules. In both patterns, WebWorker-Threads show very
small execution time with small message size and as the size and
number of messages increase show the slowest execution time. Also,
for 100, 000 with 10 and 20 messages the module is not supported.

Software Evaluation Methodology of Node.js Parallelism under Variabilities

In Node.js v12, Cluster and Child Process have the best execution
time for any message size and number. However, Worker Threads
perform best for one worker with small and medium array sizes
and decrease their performance as the points increase (p10, 000).
For small and medium size arrays, Cluster and Child Process have
their least execution time for three and four workers and Worker
Threads have their least execution time in three workers with small
points (more than one point).

In both versions, the modules show a slight performance im-
provement when parent and child exchange one big message, rather
than ten smaller ones. The graphs show that in cases with pnm10
and p10nm1 the overall execution time is less with one message
exchanged for any pattern. Additionally, in cases: p100, 000m10
and p100, 00020, Child Process and Cluster modules have their
execution time around twice more in the Batch pattern than in the
Pair one, while for smaller cases the runtimes are similar. Worker
Threads are not affected by the pattern change in the same cases.

Regarding CPU utilization, Cluster and Child Process use the
most CPU in the majority of cases. For cases with less than 10,000
points (excluding p1, 000m20), the CPU usage of all modules main-
tains very similar values for the same number of messages. However,
the CPU usage for the multi-process modules drops afterwards. Con-
sidering that the execution time increases as points and messages
increase, sending a message becomes a bottleneck. In cases with the
largest array with 10 and 20 messages, Child Process and Cluster
spend twice as much time in Batch pattern compared to the Pair
pattern and use less than two CPUs in Batch pattern. Thus, waiting
to receive everyone’s array and then sending it back becomes ineffi-
cient. For the other cases with smaller messages, the patterns do not
have a significant difference. In Node.js v9, WebWorker-Threads use
less CPU than Cluster and Child Process. In Node.js v12, Worker
Threads use the least CPU in the Pair pattern for every case and in
the Batch pattern, all cases except the two with the largest array
and 10 and 20 messages.

The CPU frequency is also higher for multi-process modules.
However, as the message size and the number increase the multi-
thread modules reach and sometimes overcome their values. The
frequency values of Child Process, Cluster, in both Node.js versions,
and Worker Threads show that the frequency increases significantly
from one worker to three workers and four workers. On the other
hand, WebWorker-Threads decrease their frequency as workers
increase for small messages.

8 DISCUSSION

The performance analysis within our test environment reveals as-
pects that need to be taken into consideration during software
design and bottleneck analysis. The outcomes related to our hy-
potheses in parentheses are as follows:

The first observation is the overhead of spawning new workers.
The results show that this overhead can be high in both Node.js
thread and process implementations. In contrast to our first hy-
pothesis, the creation of a Node.js thread does not guarantee lower
overhead. In fact, the overhead can be similar or higher than the
multi-process implementations. WebWorker-Threads, followed by
Napa.js, shows the best performance in Node.js v9.7.1, while Child
Process, followed by Cluster, shows the best in Node.js v12.1.0. In

111

CASCON’20, November 10-13, 2020, Toronto, Canada

both versions, the multi-process modules are faster when communi-
cating with very large arrays, than the multi-thread ones. However,
the above modules have some limitations on their support and
functionality. They either support fewer APIs for information ex-
change (argument passing and shared memory techniques were
not supported in WebWorker-Threads and message passing was
not supported in Napa.js) and/or less data exchanged in some cases
(arrays larger than 10° could not be sent as arguments in Clus-
ter and Child Process and arrays of 100,000 points with 10 and 20
messages could not be sent in WebWorker-Threads). On the other
hand, Worker Threads do not have any limitation on the same
experiments. (H1)

The performance and the module support depends on the Node.js
version. Thus, there is not a clear winner for both versions. The
modules are presented and compared within their versions. Among
versions, changes are introduced to Node.js, that affect the whole
system’s performance and make it unfair to draw any conclusions
on modules for both versions. Also, the Node.js version appears to
be an important factor for choosing a module, because of version
incompatibilities. The transition from Node.js v9.7.1 to Node.js
v12.1.0, shows benefits in the performance with lower execution
time and fewer GCs. Thus, applications that use the above modules,
can experience better execution time in a newer Node.js version.
However, findings show that in the latter version, the Cluster and
Child module are not optimized evenly in certain cases. Thus, the
code compilation might benefit the performance differently. (H2)

Argument passing has the least execution time in many cases,
but the difference with other techniques is minor. Also, there is
a minor overhead difference among them. The performance in
Napa.js between argument passing and shared memory is obvious
in several cases, while for the other modules the gap appears in large
arrays, in which shared memory techniques outperform. However,
argument and message passing allow for more flexibility on the
type and size of the data sent than in the shared memory solutions.
In the latter cases, the developers need to define the data size and
type that is shared across instances. (H4)

In most cases, the communication pattern does not affect perfor-
mance. Only multi-process modules are affected for large message
exchanges. The gap with different message numbers and sizes is
minor within each module, but the modules show slightly better
performance with one larger message exchanged than ten smaller.
A big performance gap appears for messages with large arrays. (H5)

The environment affects the performance of all modules. DVFS
affects the scalability of the parallelization modules, by changing
the “speed” of CPUs as more work is executed by them. Spawning
more than one worker can be faster with the current CPU scaling
driver/governor and CPU boost limits. Usually, Node.js threads
use less CPU and lower frequency. However, the execution envi-
ronment affects the multi thread implementations more than the
multi process ones. The execution of a compute-intensive task in
the virtualized environment creates higher slowdowns in the multi
thread implementations compared with multi process ones. The
difference, though, does not change the trend on which module has
the highest speedup, since all modules experience slowdowns. (H3)

CASCON’20, November 10-13, 2020, Toronto, Canada

9

CONCLUSION AND FUTURE WORK

Node.js allows the creation of parallelization modules with different
architectures. Understanding and investigating key functionalities
can give insight on which one is more appropriate in every case.
Thus, we provide an evaluation methodology and survey Node.js
parallelization modules, while we consider variabilities in a soft-
ware and hardware level. We formulate hypotheses and perform an
experimental study to conclude on these statements and provide
better module utilization.

However, our focus is on task parallelism on one machine. In
the future, we can use our methodology for evaluating modules
on distributed systems with the latest Node.js/module version and
considering performance interference. Also, our study is based on
micro-tasks that while we focus on specific individual aspects, the
outcomes might deviate in complex real-world cases. Following
a similar methodology with more elaborated scenarios can reveal
further observations and the connection between controlled micro-
tasks with real-world scenarios, including more variabilities.

ACKNOWLEDGMENTS

This research was conducted within the Centre for Advanced Studies—

Atlantic, Faculty of Computer Science, University of New Brunswick.

The authors are grateful for the colleagues and facilities of CAS
Atlantic in supporting our research. The authors would like to
acknowledge the funding support of the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), 501197-16. Further-
more, we would also like to thank the New Brunswick Innovation
Foundation for contributing to this project. We also thank Stephen
MacKay for his careful proofreading and editing the paper to im-
prove its quality.

REFERENCES

(1]

[10]

[11

[12]
[13]

[14]

[n.d.]. Node.js v14.4.0 Documentation - Modules. https://nodejs.org/api/modules.
html. [Online; accessed 15-June-2020].

2014. Libuv 1.20.4-dev Documentation. http://docs.libuv.org/en/v1.x/design.html.
[Online; accessed 13-July-2018].

2015. Chrome V8. https://developers.google.com/v8/. [Online; accessed 13-July-
2018].

2017. Intel P-State Driver. https://www.kernel.org/doc/Documentation/cpu-freq/
intel-pstate.txt. [Online; accessed 19-December-2019].

2018. Napa.js - Namespace Transport. https://github.com/microsoft/napajs/blob/
7e934ecc125a02088c25e1a58a8eb1b6fad80f6d/docs/api/transport.md. [Online;
accessed 13-November-2019].

2018. Napa.js - Namespace Zone. https://github.com/microsoft/napajs/blob/
73460d244438e91d302194ee02de2a911a9bb731/docs/api/zone.md. [Online; ac-
cessed 13-November-2019].

2018. Napa.js - Napa.js Module. https://github.com/microsoft/napajs/blob/master/
docs/api/module.md#js-vs-cpp. [Online; accessed 13-November-2019].

2018. Napa.js - Transport JavaScript Standard Built-in Objects. https://github.
com/microsoft/napajs/blob/7e934ecc125a02088c25e1a58a8eb1b6fad80f6d/docs/
design/transport-js-builtins.md. [Online; accessed 13-November-2019].

2018. Napa.js: A Multi-threaded JavaScript Runtime. https://github.com/
microsoft/napajs. [Online; accessed 20-July-2018].

2018. Napa.js: estimate-pi-in-parallel.js. https://github.com/microsoft/napajs/
blob/master/examples/tutorial/estimate-pi-in-parallel/estimate- pi-in-parallel.
js. [Online; accessed 22-July-2018].

2018. Node.js v10.4.1 Documentation - Child Processes. https://nodejs.org/api/
child_process.html. [Online; accessed 20-July-2018].

2018. Node.js v10.4.1 Documentation - Cluster. https://nodejs.org/api/clusterhtml.
[Online; accessed 20-July-2018].

2018. WebWorker Threads. https://www.npmjs.com/package/
webworker-threads. [Online; accessed 7-July-2018].

2018. WebWorker Threads - Lightweight Web Worker API Implemen-
tation with Native Threads - Repository. https://github.com/audreyt/
node-webworker-threads. [Online; accessed 13-November-2019].

112

[22

[23

[24]

[25

[26]

[27

[29

[30

[31

[37

(38]

(39]

[40

[41]

[42

M. Patrou, J. M. Baird, K. B. Kent and M. Dawson

2018. WebWorker Threads - WebWorkerThreads.cc. https://github.com/audreyt/
node-webworker-threads/blob/dfbbe267b83224e0d7eb82957fe07dcdc2122464/
src/WebWorkerThreads.cc. [Online; accessed 13-November-2019].

2019. Node.js C++ Codebase. https://github.com/nodejs/node/blob/master/src/
README.md. [Online; accessed 19-December-2019].

2019. Node.js v12.1.0 Documentation - Events. https://nodejs.org/dist/v12.
1.0/docs/api/events.html#events_class_eventemitter. [Online; accessed 11-
November-2019].

2019. Node.js v12.1.0 Documentation - Worker Threads. https://nodejs.org/dist/
v12.1.0/docs/api/worker_threads.html. [Online; accessed 11-November-2019].
Jay Conrod. 2014. A tour of V8: Garbage Collection. http://jayconrod.com/posts/
55/a-tour-of-v8-garbage-collection. [Online; accessed 6-July-2018].

Libuv contributors. 2019. Libuv Documentation Release 1.33.1. https://
buildmedia.readthedocs.org/media/pdf/libuv/stable/libuv.pdf. [Online; accessed
18-November-2019].

Jamie Davis. 2017. WebWorker Threads - Developer guide. https://github.com/
audreyt/node-webworker-threads/wiki/Developer-guide. [Online; accessed
14-November-2019].

OpenJS Foundation. [n.d.]. Don’t Block the Event Loop (or the Worker Pool). https:
//modejs.org/uk/docs/guides/dont-block-the-event-loop/. [Online; accessed 13-
December-2019].

Open]JS Foundation. 2020. Node.js. https://nodejs.org/en/. [Online; accessed
17-August-2020].

Joyee Cheung Alibaba Cloud(Alibaba Group). 2017. Are your V8 garbage collec-
tion logs speaking to you? https://www.slideshare.net/NodejsFoundation/are-
your-v8-garbage-collection-logs-speaking-to-youjoyee-cheung-alibaba-
cloudalibaba-group. [Online; accessed 8-January-2020].

Jakob Gruber. 2019. JIT-less V8. https://v8.dev/blog/jitless. [Online; accessed
12-December-2019].

Anna Henningsen. 2018. Worker: Initial Implementation #20876. https://github.
com/nodejs/node/pull/20876. [Online; accessed 15-November-2019].

Docker Inc. 2018. Docker. https://www.docker.com/. [Online; accessed 07-July-
2018).

Dmitry Namiot and Vladimir Sukhomlin. 2015. JavaScript Concurrency Models.
International Journal of Open Information Technologies 3, 6 (2015), 21-24.

Lionel Nkenyereye and Jong-Wook Jang. 2016. Performance Evaluation of Server-
side JavaScript for Healthcare Hub Server in Remote Healthcare Monitoring
System. Procedia Computer Science 98 (2016), 382-387.

Maria Patrou, Kenneth B Kent, and Michael Dawson. 2019. Scaling Parallelism
Under CPU-Intensive Loads in Node.js. In 2019 27th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing (PDP). IEEE,
205-210.

Stefan Tilkov and Steve Vinoski. 2010. Node. js: Using JavaScript to build high-
performance network programs. IEEE Internet Computing 14, 6 (2010), 80-83.
Devesh Tiwari and Yan Solihin. 2012. Architectural characterization and similar-
ity analysis of sunspider and Google’s V8 Javascript benchmarks. In Performance
Analysis of Systems and Software (ISPASS), 2012 IEEE International Symposium on.
IEEE, 221-232.

ukrbublik. 2019. shm-typed-array. https://www.npmjs.com/package/
shm-typed-array. [Online; accessed 19-November-2019].

Michael Lippautz Ulan Degenbaev and Hannes Payer. 2017. Orinoco: Young
Generation Garbage Collection. https://v8.dev/blog/orinoco-parallel-scavenger.
[Online; accessed 18-December-2019].

V8. 2018. Concurrent Marking in V8. https://v8.dev/blog/concurrent-marking.
[Online; accessed 18-December-2019].

V8. 2019. 3.11.10(node0.8.28) - v8:Isolate Class Reference. https://v8docs.
nodesource.com/node-0.8/d5/dda/classv8_1_1_isolate.html. [Online; accessed
25-November-2019].

V8.2019. Getting started with embedding V8. https://v8.dev/docs/embed. [Online;
accessed 18-December-2019].

Jeffrey S Vetter and Michael O McCracken. 2001. Statistical scalability analysis of
communication operations in distributed applications. In ACM SIGPLAN Notices,
Vol. 36. ACM, 123-132.

Jeffrey S Vetter and Andy Yoo. 2002. An empirical performance evaluation of
scalable scientific applications. In Supercomputing, ACM/IEEE 2002 Conference.
IEEE, 16-16.

Rafael J. Wysocki. 2017. intel_pstate CPU Performance Scaling Driver. https:
//www.kernel.org/doc/html/v4.12/admin- guide/pm/intel_pstate.html. [Online;
accessed 19-December-2019].

Jiapeng Zhu, Panagiotis Patros, Kenneth B Kent, and Michael Dawson. 2018.
Node. js scalability investigation in the cloud. In Proceedings of the 28th Annual
International Conference on Computer Science and Software Engineering. IBM
Corp., 201-212.

Yuhao Zhu, Daniel Richins, Matthew Halpern, and Vijay Janapa Reddi. 2015.
Microarchitectural implications of event-driven server-side web applications. In
Microarchitecture (MICRO), 2015 48th Annual IEEE/ACM International Symposium
on. IEEE, 762-774.

https://nodejs.org/api/modules.html
https://nodejs.org/api/modules.html
http://docs.libuv.org/en/v1.x/design.html
https://developers.google.com/v8/
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://github.com/microsoft/napajs/blob/7e934ecc125a02088c25e1a58a8eb1b6fad80f6d/docs/api/transport.md
https://github.com/microsoft/napajs/blob/7e934ecc125a02088c25e1a58a8eb1b6fad80f6d/docs/api/transport.md
https://github.com/microsoft/napajs/blob/73460d244438e91d302194ee02de2a911a9bb731/docs/api/zone.md
https://github.com/microsoft/napajs/blob/73460d244438e91d302194ee02de2a911a9bb731/docs/api/zone.md
https://github.com/microsoft/napajs/blob/master/docs/api/module.md#js-vs-cpp
https://github.com/microsoft/napajs/blob/master/docs/api/module.md#js-vs-cpp
https://github.com/microsoft/napajs/blob/7e934ecc125a02088c25e1a58a8eb1b6fad80f6d/docs/design/transport-js-builtins.md
https://github.com/microsoft/napajs/blob/7e934ecc125a02088c25e1a58a8eb1b6fad80f6d/docs/design/transport-js-builtins.md
https://github.com/microsoft/napajs/blob/7e934ecc125a02088c25e1a58a8eb1b6fad80f6d/docs/design/transport-js-builtins.md
https://github.com/microsoft/napajs
https://github.com/microsoft/napajs
https://github.com/microsoft/napajs/blob/master/examples/tutorial/estimate-pi-in-parallel/ estimate-pi-in-parallel.js
https://github.com/microsoft/napajs/blob/master/examples/tutorial/estimate-pi-in-parallel/ estimate-pi-in-parallel.js
https://github.com/microsoft/napajs/blob/master/examples/tutorial/estimate-pi-in-parallel/ estimate-pi-in-parallel.js
https://nodejs.org/api/child_process.html
https://nodejs.org/api/child_process.html
https://nodejs.org/api/cluster.html
https://www.npmjs.com/package/webworker-threads
https://www.npmjs.com/package/webworker-threads
https://github.com/audreyt/node-webworker-threads
https://github.com/audreyt/node-webworker-threads
https://github.com/audreyt/node-webworker-threads/blob/dfbbe267b83224e0d7eb82957fe07dcdc2122464/src/WebWorkerThreads.cc
https://github.com/audreyt/node-webworker-threads/blob/dfbbe267b83224e0d7eb82957fe07dcdc2122464/src/WebWorkerThreads.cc
https://github.com/audreyt/node-webworker-threads/blob/dfbbe267b83224e0d7eb82957fe07dcdc2122464/src/WebWorkerThreads.cc
https://github.com/nodejs/node/blob/master/src/README.md
https://github.com/nodejs/node/blob/master/src/README.md
https://nodejs.org/dist/v12.1.0/docs/api/events.html#events_class_eventemitter
https://nodejs.org/dist/v12.1.0/docs/api/events.html#events_class_eventemitter
https://nodejs.org/dist/v12.1.0/docs/api/worker_threads.html
https://nodejs.org/dist/v12.1.0/docs/api/worker_threads.html
http://jayconrod.com/posts/55/a-tour-of-v8-garbage-collection
http://jayconrod.com/posts/55/a-tour-of-v8-garbage-collection
https://buildmedia.readthedocs.org/media/pdf/libuv/stable/libuv.pdf
https://buildmedia.readthedocs.org/media/pdf/libuv/stable/libuv.pdf
https://github.com/audreyt/node-webworker-threads/wiki/Developer-guide
https://github.com/audreyt/node-webworker-threads/wiki/Developer-guide
https://nodejs.org/uk/docs/guides/dont-block-the-event-loop/
https://nodejs.org/uk/docs/guides/dont-block-the-event-loop/
https://nodejs.org/en/
https://v8.dev/blog/jitless
https://github.com/nodejs/node/pull/20876
https://github.com/nodejs/node/pull/20876
https://www.docker.com/
https://www.npmjs.com/package/shm-typed-array
https://www.npmjs.com/package/shm-typed-array
https://v8.dev/blog/orinoco-parallel-scavenger
https://v8.dev/blog/concurrent-marking
https://v8docs.nodesource.com/node-0.8/d5/dda/classv8_1_1_isolate.html
https://v8docs.nodesource.com/node-0.8/d5/dda/classv8_1_1_isolate.html
https://v8.dev/docs/embed
https://www.kernel.org/doc/html/v4.12/admin-guide/pm/intel_pstate.html
https://www.kernel.org/doc/html/v4.12/admin-guide/pm/intel_pstate.html

The Weakest Link: Revealing and Modeling the Architectural
Patterns of Microservice Applications

Vladimir Podolskiy
v.podolskiy@tum.de
Chair of Computer Architecture &
Parallel Systems
Technical University of Munich
Germany

Michael Gerndt
gerndt@in.tum.de
Chair of Computer Architecture &
Parallel Systems
Technical University of Munich
Germany

ABSTRACT

Cloud microservice applications comprise interconnected services
packed into containers. Such applications generate complex com-
munication patterns among their microservices. Studying such
patterns can support assuring various quality attributes, such as au-
toscaling for satisfying performance, availability and scalability, or
targeted penetration testing for satisfying security and correctness.
We study the structure of containerized microservice applications
via providing the methodology and the results of a structural graph-
based analysis of 103 Docker Compose deployment files from open-
sourced Github repositories. Our findings indicate the dominance of
a power-law distribution of microservice interconnections. Further
analysis highlights the suitability of the Barabasi-Albert model for
generating large random graphs that model the architecture of real
microservice applications. The exhibited structures and their usage
for engineering microservice applications are discussed.

CCS CONCEPTS

« Computer systems organization — Cloud computing; - Soft-
ware and its engineering — Extra-functional properties.

KEYWORDS

cloud-native application, microservice, software vulnerability, ap-
plication topology

ACM Reference Format:

Vladimir Podolskiy, Maria Patrou, Panos Patros, Michael Gerndt, and Ken-
neth B. Kent. 2020. The Weakest Link: Revealing and Modeling the Ar-
chitectural Patterns of Microservice Applications. In Proceedings of 30th
International Conference on Computer Science and Software Engineering (CAS-
CON’20). IBM, USA, 10 pages.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CASCON’20, November 1013, 2020, Toronto, Canada

© 2020 Copyright held by the owner/author(s).

Maria Patrou
maria.patrou@unb.ca
Faculty of Computer Science
University of New Brunswick
Canada

113

Panos Patros
panos.patros@waikato.ac.nz
Department of Software Engineering
University of Waikato
New Zealand

Kenneth B. Kent
ken@unb.ca
Faculty of Computer Science
University of New Brunswick
Canada

1 INTRODUCTION

Cloud-native applications comprise containerized microservices,
each implementing a narrow part of the application’s functionality
to enable fine-grain elasticity. However, finding the right number
of containerized microservice instances to guarantee quality of
service, reduce resource consumption and identify bottlenecks is
not trivial: communication between microservices can happen in a
number of ways depending primarily on the application’s topology.

Analyzing the structure of real microservice applications unveils
chains of microservices (in a producer-consumer relationship) that
utilize various communication protocols with as many as 100-300
services [7]. When scaling a particular logical service in such a
chain, one may face the necessity of cascading capacity changes for
the downstream services to avoid such services becoming a new
bottleneck [19]. Knowing the topology of a microservice application
could help identify such a bottleneck service, the weakest link, in
advance. This allows predictive scaling that can dynamically meet
demand [26] and protect against malicious entities exploiting a
weakest link vulnerability, which can happen via a targeted denial
of service attack affecting the availability of the cloud application.

Besides scaling and security, knowing a microservice topology
can assist in assuring other software quality attributes. For example,
realistic benchmarks can be created using the service topology as
a generic template. Also, deployment based on the weakest link-
services to assist the weakest one and determining the application
capacity can lead to better performance.

The lack of publicly available industry-scale microservice ap-
plications precluded the research of this type of applications [7].
The study of public code repositories allows us to overcome this
challenge to an extent as individuals and companies tend to open
source their production code or community projects. The strong
positive correlation between the number of employees and number
of services supported in an application [7] allows us to assume
that it is more likely to find an application encompassing a high
number of services and with a more complex topology in the public
repository of a large company, such as Google or Uber, than in the
repository of a recent startup or an individual.

CASCON’20, November 10-13, 2020, Toronto, Canada

Studying the structure of open source microservice applications
can disclose common topological patterns. Generating versatile
real-like application structures from these patterns can further be
used to assemble microservice applications of similar structure but
with a larger size to enable practice-relevant research or realistic
stress-testing for such applications. We focus on the architectural
patterns of microservice applications contributing in:

e Performing an empirical study of the structure of 103 mi-
croservice applications available on Github.

o Modeling the structure of the over-represented microservice
application type with a power-law distribution of vertices’
degree using random graph models, which we evaluate.

e Outlining an overall methodology for performing such em-
pirical studies, including the identification of an appropriate
random graph generation model and tuning its parameters.

The paper is organized as follows: background and related work
in Sections 2 and 3; architectural pattern inspection of the applica-
tions in Section 4; modeling of the structure of applications with
power-law service degree distribution in Section 5, observations in
Section 6 and conclusion and future work in Section 7.

2 BACKGROUND

A microservice implements a limited functionality, is independently
deployable and often communicates with other microservices via
the network. OS-level virtualization with containers allows one to
implement microservices easily—the software developer needs to
add the necessary libraries and the software to the container image,
which can be used to deploy multiple containers implementing
the same function. In a microservice application that follows a
Service-Oriented Architecture (SOA) software design style, the
communication between the microservices is usually done via API
calls over the network—this supports loosely coupled applications
and allows fine-grained application elasticity.

Microservice applications tend to serve users’ requests, a pat-
tern commonly used in web-shops and online-portals, because this
architecture addresses multiple requirements: the response time
of a microservice application deployed on the cloud can be rela-
tively short and predictable by scaling individual microservices;
high availability is ensured by negligible microservice deployment
times; and there are multiple orchestration tools available for mi-
croservice applications, which make management and autoscaling
easy tasks (e.g., Docker Swarm and Kubernetes) [16].

The application deployment in Docker Swarm requires the use
of a Compose file [18] in YAML [2] standard, which describes the
components of the application and their interconnections at a soft-
ware architecture and deployment level. Docker Swarm initializes
the cluster with the container-services described in the YAML file.
The file includes configuration settings for each service that re-
sides in a container, including the container image, which has the
executable code, and its dependencies with other containers that
affect the order of starting and stopping the services. Furthermore,
information on the cluster’s networking for intercommunication
and reachability among containers and their data storage is defined.

While in Docker Swarm, applications are organized into con-
tainers, Kubernetes leverages Pods. Each Pod has one or multiple

Vladimir Podolskiy, Maria Patrou, Panos Patros, Michael Gerndt, and Kenneth B. Kent

containers, while groups of pods are deployed to create an applica-
tion on a (cloud) cluster [27].

2.1 Graph Theory Essentials

A graph is a discrete mathematical abstraction that encompasses
a set of objects (vertices of a graph) and a set of relations between
these objects (edges of a graph). If the set of vertices is denoted
by V and the set of edges is denoted by E with an edge between
ith and j'h vertices being ej, then a graph can be denoted as an
ordered pair G = (V, E). Graphs are usually depicted with circles
being the vertices and lines being the edges; if a graph is directed
(the order of vertices in edge matters), arrows are used instead of
simple lines. A graph can be quantified by parameters. The most
basic quantification is through the number of vertices, |V|, and the
number of edges, |E|. In addition, each vertex could be quantified
by the number of edges that connect to it; this parameter is called
the degree of a vertex, deg(v). In a directed graph one can further
divide the notion of degree into outdegree, i.e.,the number of edges
that start at this vertex, and indegree, i.e., the number of edges that
end at this vertex. The degree sum for the undirected graph could
be computed as Y, cy deg(v) = 2|E|. The degree of a vertex is a
primary characteristic of structural patterns in the graph as it can
be used to describe the connectivity of a particular part of a graph
by relating vertices to edges in a quantifiable way. Thus, graph
theory is used in the paper as a formalism to analyze the structure
of microservice applications.

2.2 Network Theory Essentials

Network theory emerged to address the complexity and vulnera-
bility of real-world structures like power grids or the Internet [5].
In essence, modelling real a structures, a network is a graph with
labelled vertices and/or edges.

It is often necessary to understand which nodes in the network
are more important than the others. The importance could be de-
noted differently, but the most common way is to associate the
number of connections with a node’s importance. The identification
of such nodes is addressed by centrality indices that are computed
differently [9]. Degree centrality is one of the simplest centrality
measures and is defined as the number of links incident upon a
node, thus the degree centrality of a vertex v is Cp (v) = deg(v); it
characterizes the immediate importance of the node.

Degree distribution is a probability distribution of degrees in the
network used to describe the whole network. Degree distribution
shows how often nodes with a particular degree are encountered—
different degree distributions correspond to different structures. For
example, if the degree distribution has a long tail for higher degrees,
then the network contains only a few nodes of high importance, i.e.,
numerous connections with other nodes. This fact can have signifi-
cant implications in such cases as developing a network structure
that is resilient to cyber attacks. Hence, certain structural properties
of the network can be conveyed with the degree distribution.

The degree distribution of a network can be approximated by a
formula; this allows the in-depth study of the network’s properties.
For example, one of the most common types of networks is a scale-
free network with the probability distribution described roughly
by P(d) o« d=%, where the fraction of nodes with d connections is

114

The Weakest Link: Revealing and Modeling the Architectural Patterns of Microservice Applications

defined as P(d) and drops exponentially with the growth of the
degree (@ is usually between 2 and 3). Various models exist to
describe the properties of the networks and to generate new ones.
In particular, scale-free networks are best described by the Barabasi-
Albert (BA) model that uses a preferential attachment method to
generate networks with a power-like degree distribution [4].

We employ degree distribution on the microservice connectivity
as described by the configuration files. The metric exposes the con-
nectivity across the microservices, thus revealing the application’s
structure model. We conduct an analysis of the microservice ap-
plications that allows us to use random graph models to generate
networks with realistic microservice structural properties.

3 RELATED WORK

Despite the absence of work devoted to the study of the struc-
tural aspects of microservice applications, the importance of such
research is recognized in the literature [14].

Contributions to the study of application’s structure were made
for conventional multi-tier application architectures, such as ones
with a front-end, an application service and a database. The neces-
sity to incorporate such knowledge to identify application bottle-
necks was recognized by Malkowski et al. as the result of exper-
imental studies of N-tier applications using the RUBiS and RUB-
BoS benchmarks [24]. Wang et al. approached the challenge of
detecting the transient bottlenecks in multi-tier applications that
contribute to the latency long-tail problem in clouds via elaborate
load-throughput analysis on multiple tiers of application [32, 33].
Liu et al. applied queuing network theory-based application mod-
eling to wide-spread 3-tier web-applications to derive accurate
predictions for response time and throughput [23]. Workload scal-
ing as a method to scale multi-tier cloud applications via replicating
the processing of the same request and sending the results of the
fastest VM to the user was proposed by Pérez at al. [28]; the same
work marks application topology and tier-specific workload scaling
models as a research challenge. sSPARE is the first known partial
replication system that takes into account the structure of a multi-
tier application to coordinate the replication levels on all tiers [6].

Similar to us, Marquez et al. performed an empirical study on scal-
ability aspects of microservice-based applications by investigating
30 open-sourced projects. They analyzed three types of configura-
tion files found in the projects: YAML files for Docker Compose,
POM files for Apache Maven and Gradle files (build.gradle). Their
main focus was to answer research questions towards scalability
using their pattern language that focuses on scalability dimen-
sions they have previously identified. Their goal is to identify the
frameworks that meet the scalability dimensions and provide rec-
ommendations on microservice architecture [25].

In contrast, our study focuses on applying graph theory to
microservice-based applications’ structures. Every service, which
is defined in the Compose file, is treated as a node and keywords
that reveal their dependencies are used to extract the connections
among services. We identify and generate models that best fit the
structures and discuss their potential usage in software engineer-
ing. Any observations on software qualities, such as scalability,
security etc., are made based on the architecture of the service

115

CASCON’20, November 10-13, 2020, Toronto, Canada

100%
80%
60%
40%
20%

0%

Cumulative %Files

1 2 3 45 6 7 8 910
#Services

Figure 1: Cumulative distribution of configuration files per
number of services they declare. The shaded area designates
the files having four or more services for further analysis.

interconnection and can be used to improve software quality. Fi-
nally, unlike other empirical studies who analyze source code, such
as [11], our focus is entirely on the interconnections at the software
architecture/component level.

4 ARCHITECTURAL PATTERN INSPECTION

Various public Github repositories of IT companies, organizations
and individuals were explored manually to obtain their config-
uration YAML files. The files were processed to reveal the type
of services and how they tend to be interconnected. A statistical
analysis with graph and network metrics was applied to find how
common distributions model real-world application structures.

4.1 Dataset

Although following a manual data collection is a limitation of the
study, it was adopted since the automatic exploration of Github
repositories’ excerpts available on Kaggle! would result in mean-
ingless sample pet-projects polluting the results and thus, biasing
the resulting structural models. The exploration resulted in a col-
lection of 137 Docker Compose configuration files taken from 107
Github repositories, which we made available [1]. The collected
configuration files represent a variety of applications, including
web-shops and web-portals, cloud platforms for IoT, technology
stacks, etc. Their version distribution was as follows: 18 files were
version 1.0; 66 were version 2.x; and 53 were version 3.x.

These YAML files define the start up sequence of microservices
via special keywords, such as depends_on, links, or external_links®.
We used this formal specification to create service-dependency
graphs. However, to ensure our dataset contained complex-enough
points, it was decided to exclude those that had three or fewer
connected microservices (Figure 1).

After the above filtering was processed, 103 Compose configura-
tion files were selected and analyzed for their microservice topology.
Based on these configuration files, the results show that at least
26% of the applications contain more than eight microservices. For
each of the 826 services defined, we extracted the number of ports
exposed to other services and to outside clients, the number of
persistent volumes, the number of services a service depends on
and the number of services that are depended upon a service.

Uhttps://www.kaggle.com/github/github-repos
2https://docs.docker.com/compose/compose-file/#links

CASCON’20, November 10-13, 2020, Toronto, Canada

(a) Popular service distribution

30
25
o
= 20
[N
o
S 15
g
c
5 10
=
0
A O LN A ®OMINO A ®MWNN O
NS OOAMINNOCNTST O 0 O
A - A A A NNNN®

Ordinals of Services Sorted by Popularity

(b) Popular services — 11 most popular services

30 26
25
20
15
10

5

0

[EEN
0o

#Files

redis IE——
mysq| ——
rabbi m—
elast m———
nginx ——
mongo e
kafka = 2

Figure 2: Service popularity in the filtered dataset

General observations were made on the filtered service data
using the Pearson Coeflicient to show the relationship among the
metrics (as values move away from zero, the statistical relationship
among the metrics is stronger):

o No large correlations were measured among the extracted
metrics. A coefficient of -0.19 was recorded between the
numbers of depending and depended services, which indi-
cates the presence of leaves and roots in the tree-structure
of an application; and a coefficient of 0.17 for the number
of volumes and dependent services, which indicates that
persistence-related functionality was less frequent on leafs.

e No trend was observed for an increased number of microser-
vices being used as versions progressed. The correlation
between number of services and file version was 0.06.

e Certain services were more popular than others in a way
that resembles a power law distribution (Figure 2). In par-
ticular, popular services used in at least ten different files
revealing various databases, cloud elasticity services and load
balancers—not surprising, given the types of applications
commonly deployed on the cloud.

4.2

Next, an adjacency matrix representation of the underlying directed
graph was produced for each of the deployment files of the dataset.
The matrices were analyzed to identify patterns in the structure
of the microservice applications using the observed degree metric,
i.e., the number of services that are connected to a service.

Microservice Degree Distribution

Vladimir Podolskiy, Maria Patrou, Panos Patros, Michael Gerndt, and Kenneth B. Kent

116

4.2.1 Degree Distributions. Visual inspection identified three preva-
lent degree distribution types in the dataset:

e Uniform distribution. The number of vertices N for a de-
gree d in a range [a, b] is const and 0 otherwise.

e Power law (Pareto) distribution. The number of vertices
N for a degree d is N oc d™%.

e Normal distribution. The number of vertices N for a de-
_(d-w
greedis N e 202

Furthermore, an automated machine learning-based approach,
agglomerative clustering, that leveraged hierarchical clustering,
also identified three distinct clusters in our dataset, confirming our
visual inspection findings. Each application was assigned a vector
v = (po, P1, .- p24) that represents the probability p; of a service
being connected by i services in a specific application, where 24 is
the maximum observed number of services that a service is con-
nected by. Each connection is represented as a directed line from
one service to the others that depends, as indicated by the Compose
file’s keywords: links, external_links and depends_on. As an example,
consider Figure 4C, which shows the graph of a batch scheduling
system by Yelp with four services and three connections. The cal-
culated service dependence probability vector is: 0.25,0.75,0,0,..,0,
where as 25% of the services (one) have no incoming line to them
and 75% (three) have one.

The service dependence probability vectors were averaged, clus-
tered pairwise and recursively based on the smallest Euclidean
distance among their probabilities. The dendrogram of the results is
displayed in Figure 3 and shows the three clusters that the samples
were automatically grouped into. When averaging out all members
of each of the clusters, the aggregate distributions (which are omit-
ted for brevity) appear to be primarily following the power law
with some other distribution added on top.

However, every cluster shows different properties. Cluster 1 has
more than half (57%) of its services with one service to be depended
upon and 28% zero. Thus, the majority of the services were acting
as leaf-services and less than a third as roots. Cluster 2 has 71% of
the application’s services with no dependencies, indicating mini-
mum dependency among the majority of the services, while the
dependencies should be concentrated to a few services. Cluster 3 is
the most representative in the dataset, comprising 44% of the appli-
cations. It indicates that 40% of the services had zero dependencies,
13% and 27% had one and two, respectively. The cluster shows more
services with zero dependencies that Cluster 2, revealing fewer
independent services and more services with less than two depen-
dencies. All three clusters show that dependencies among services
do not exceed two connections for most services: finding a service
that depends on more than two services is rare.

4.2.2 Degree Distribution Methodology for Small Graphs. With a
maximum of 24 vertices in the largest microservice application,
determining the form of the degree distributions with statistical
tests can be inaccurate [20]. A graph may be attributed to several
distribution types. To improve the quality of such tests, we devised
an appropriate testing technique.

The proposed approach combines conventional statistical distri-
bution tests with fallback heuristics. Preliminary tests on randomly
generated distributions showed high inaccuracy of statistical tests

The Weakest Link: Revealing and Modeling the Architectural Patterns of Microservice Applications

(a) Dendrogram of sampled microservice applications

1514

1.04

0.5

i

(b) Average degree distribution of clusters

0.0

80%
70%
60%
50%
40%
30% |
20%
10%
0%
15

20 25

Degree

—Clust. 1(26.61%) —Clust. 2 (29.36%) Clust. 3 (44.04%)

Figure 3: Unsupervised learning of clusters of distributions
in the dataset.

for a number of samples less than six; hence we applied fallback
heuristics when graphs had fewer than six vertices or when the
corresponding statistical test could not be applied to the degree
distribution. Although the merger of the statistics and heuristics-
based analysis approaches is limited compared to the pure statistics,
statistics offers relatively few methods available for the small pop-
ulation sizes. Omitting the small applications (between 3 and 6
services) from the consideration would have added a significant
flaw to the research since there exist industry applications of such
"small" sizes, e.g. at companies where IT plays only the support
role for the operations [7]. The designed heuristics are as follows:

Uniform distribution heuristic. A small number of distinct
degrees in graphs makes the direct application of uniform distribu-
tion tests impractical. However, it is possible to transform the data
such that statistical testing would provide meaningful results. First,
the initial degree distribution is transformed into a histogram. Fol-
lowing, the Pearson’s chi-squared test is applied to test the degree
distribution based on a Monte Carlo test with 500 replicates [17].
The value of 500 replicates was determined by conducting multiple
tests on randomly generated distributions. The fallback heuristic

117

CASCON’20, November 10-13, 2020, Toronto, Canada

for uniform distribution checks the single outcome not covered by
the statistical test: when all vertices have the same degree.

Power law distribution heuristic. The Kolmogorov-Smirnov
test was used to determine if the degree distribution of a graph is
close to a power law (Pareto) distribution. Computed parameters
of power law distribution allow us to determine if the fallback test
should be invoked. Usually, it is necessary for borderline graphs
with 6-7 vertices. The fallback heuristic computes the mean degree
and checks if the number of vertices with a degree lower than the
computed mean is higher than the number of vertices with a degree
higher than the mean:

{oild < p} = ojld > p}| > T

Based on the threshold T for such a comparison, more or fewer
cases can be classified as following the power law; the threshold
values 1 or 2 were good for the collected dataset.

Normal distribution heuristic. To determine if the degree
distribution of a graph follows a normal distribution, the Shapiro-
Wilk test of normality [29] was used. This test was shown to be more
powerful when testing for normality in comparison to Kolmogorov-
Smirnov [31]. Its associated fallback heuristic checks 1) if the most
frequent degree in a graph dy is between the minimal (d;,) and
maximal (dys) degrees, and 2) if the number of vertices with degrees
higher than the most frequent degree and the number of vertices
with degrees lower than the most frequent degree are almost equal
(discrepancy by a threshold T = 1 was allowed):

(dm < df < dM) A (|{Ui|d < df}| - Hojld > df}| <T

4.3 Service Degree Distribution Analysis

We compared the known distributions: power-law, uniform and
normal with the application topologies using the statistical tests and
the heuristics described above. Table 1 shows the applications that
fit in the corresponding distribution type under the graph-based
threshold parameters. To account for the limitations of the statisti-
cal analysis with fallback heuristics, we adapted the distribution
types names accordingly. Both absolute numbers and percentages
in dataset are reported. The Total column presents the applications
that have the distribution type, while the Pure column shows the
applications that fit only in the underlying distribution type.

Microservice applications with the power law degree distribu-
tion of the underlying structure graph prevail. The applications
with such a degree distribution cover around 87% of the whole
data set with a loose threshold of 1 for the fallback heuristic and
around 78% with a tighter threshold of 2. The uniform and normal
distribution cases amount to only around 42% and 19% of cases
correspondingly. Considering only the cases that were associated
with a single distribution type, a similar picture of power law dis-
tribution emerges, being the most frequent with around 47% of all
the cases, and followed by the uniform distribution with around a
30%-wide gap. For the small number of unique degrees, the uniform
degree distribution might be overrepresented. Hence, for the ex-
amined dataset, the dominance of the power law-like distribution
becomes even more apparent. Samples of the discussed graphs can
be found in Figure 4.

CASCON’20, November 10-13, 2020, Toronto, Canada

Distr. Threshold = 1* Threshold = 2%
Type Total® Pure® Total® Pure®
Skewed 90 (87.4%) 13 (46.6%) 30 (77.7%) 12 (40.8%)
Near-uniform 43 (41.8%) 11 (10.7%) 43 (41.7%) 14 (13.6%)
Central 20 (19.4%) 0 (0.0%) 20 (19.4%) 0 (0.0%)
Other - (-%) 2 (1.9%) - (-%) 8 (7.8%)

#Threshold is set for the fallback test.
bPositive outcomes for other types are possible.
¢Only negative outcomes for other distribution types.

Table 1: Degree Distribution types

Table 1 shows several distributions that are different from those
tested. The thresholds increase from one to two for the power-law
heuristic test yields an increase in the number of unclassified cases
by six, which might be hybrids between the skewed and some other
types . The two other cases should be quite different from the power
law distribution. Indeed, these two examples show the prevalence
of vertices of a higher degree in comparison to vertices of a lower
degree; this type of distribution could be described as N o ed.

The main outcome of the analysis is that most applications have a
structure of a scale-free network [3]. The skewed degree distribution
with a long tail implies a presence of services that have significantly
more connections than others; there are at least several types of
such microservices, e.g., PostgreSQL, Zookeeper, RabbitMQ and
Elasticsearch. This is not surprising as these microservices imple-
ment common functions, such as logging, configuration manage-
ment, message brokering and data storage. This also means that
most microservice applications tend to form bottlenecks and are
susceptible to targeted attacks.

5 ARCHITECTURAL PATTERNS MODELING

Our dataset provides hints on how cloud-native applications tend to
be structured. Understanding these tendencies can result in models
that capture structural properties of real-world applications for
further structure-driven capacity balancing research. To evaluate
what types of models better fit our data, we use several models
that can generate random graphs. Then, we compare the similari-
ties between the real and randomly generated graphs to determine
how well each model (and its parameters) fits for the empirically
collected data. The study was conducted for 42 microservice appli-
cations, which were attributed to the power law degree distribution
with the strictest conditions according to Table 1.

5.1 Structural Models Identification

A large percentage of the applications exhibited skewed degree
distribution. Thus, five random graph models, which we believe
describe applications that model scale-free networks, are chosen.
Distance metrics are computed for every application and the results
for each each metric reveal the model types that best describe the
majority of the applications.

5.1.1 Considered Models. The following models were considered
to identify the architectural patterns:

(1) Erdés-Rényirandom graph (ER)inits G(n, m) and G(n, p)
forms was used as a baseline [13]. The number of vertices n
and the number of edges m are equal to that of the applica-
tion graph, whereas the probability of an edge to be included
in the generated graph p varies throughout the tests.

Vladimir Podolskiy, Maria Patrou, Panos Patros, Michael Gerndt, and Kenneth B. Kent

Skewed distribution

A} Graph of Callista Enterprise sample app

025
discovery monitor
rec COMPOsite
a” 020
rev auth
logstash
) CS . 0.15
config zipkin =
@
pro cdge 5
O = 010
elasticsearch
0.05
&)immu 0.00 _,_._/—I
3 G 9
Degree

B) Graph of ListenBrainz server

Central distribution

0.3
Odh
gquery_jeb_runner api_compat

web (D) 02

=

influx =2

0] 5

=

ribbitmg
0.1
redis spitify_read
infid%_writer
bigquery 0.0
2 3 4 5 G
Degree
) Graph of Batch Scheduling System Tron by Yelp Near-uniform distribution
mesosslave v
0.4
zookeeper

=

2

@

=
mesosaster 0z
tronsfiaster 00

Figure 4: Samples following the proposed distributions.

(2) Barabasi-Albert (BA) with the varying parameters: power
of the preferential attachment, number of edges to add per
timestep, attractiveness of vertices without edges [4];

(3) Forest Fire (FF) with the varying parameters: forward burn-
ing probability, backward burning ratio, number of ambas-
sador vertices [21];

(4) Fitness Score (FS) that generates a graph with edge proba-
bilities proportional to node fitness scores with the power
used to generate the vector containing the fitness of each
vertex as the only varying parameter [15];

(5) Simple Power Law (SPL) that generates a graph with a
desired power law degree distribution varying only the in-
degree and outdegree power law exponents [10, 15].

We used the the R package igraph [12] to implement these models.
5.1.2 Approach. The identification of a structural model for a sin-

gle application graph starts with the generation of multiple random
graphs (300) for each discussed model type (five types) with all

118

The Weakest Link: Revealing and Modeling the Architectural Patterns of Microservice Applications

INERl B) [

15
|

o

10

Number of cases
Number of cases

il)

f T T T T 1 f
0.0 0.2 0.4 0.6 0.8 1.0 0.0

T T T T 1
0.2 0.4 0.6 0.8 1.0

Figure 5: Distribution of the cases with the optimal param-
eters’ values over the values of Power of preferential attach-
ment (BA)

possible combinations of model parameter values from the mean-
ingful subspace determined by the preliminary experiments. Such
parameters as the number of vertices/edges are taken directly from
the application graph.

All distance metrics are computed, for each pair of an application
graph with one of the generated random graphs. Each distance
metric (e.g., Hamming) for the given model type (e.g., ER) and
the current set of model parameters (e.g., n = 17 and p = 0.5) is
computed as the average of all pairwise distance values between
the application graph and the random graphs generated from that
model. Averaging ensures the stability of the results.

We tuned the model parameters via running our approach with
different parameter limits multiple times. We adjusted the limits of
each parameter by studying the form of the distribution of the cases
with the minimal value of a distance metric over each parameter’s
values. If the histogram is skewed, it might be necessary to increase
the upper boundary on the parameter and continue the tuning.

An experiment with 30 application graphs showed that the upper
bound on the BA model’s parameter Power of preferential attachment
originally set to values from the interval [0.05,0.7] was too small as
the number of cases with the optimal parameters’ values increased
to the end of the interval (see plot A in Figure 5). With the upper
bound of the same parameter increased to 0.9 for the experiment
involving the full set of 42 application graphs, we did not observe
any increase in the number of cases towards the end of the interval
(see plot B in Figure 5). Hence, with an exhaustive search being
unfeasible, the parameters’ bounds tuned with this method, cover
random graphs models close to real application graphs.

5.1.3 Test Settings. The pilot test covered 30 applications. Then,
we conducted three tests on 42 applications: The first returned
results for all 42 applications, the second returned results for 41
applications, and the last one only for 36 applications. The last
test was conducted for the case of undirected graphs; the partial
results returned are due to particular distance metrics relying in
their computation on matrix invertibility, which is not always the
case for the given data set. Further, we discuss test settings and
results of the second experiment as it covers all 42 applications.
The bounds on the parameters’ values are given in Table 2. The
number of random graphs generated for each model type and each
parameters values combination is 300. The number of vertices for
each experiment was taken directly from the application graph.

119

CASCON’20, November 10-13, 2020, Toronto, Canada

Model type | Parameter Start®| End” | Step®
ER G(n,m) | Edges number - - -
ER G(n, p) Edge inclusion prob. 0.05 | 0.65 | 0.05
BA Power of the preferential attachment 0.05 | 0.90 | 0.05
Number of edges to add per timestep 1 2 1
Attractiveness of vertices with no edges 0.01 3.5 0.01
FF Forward burning probability 0.05 0.65 | 0.05
Backward burning ratio 1 3 1
Number of ambassador vertices 1 2 1
FS Power to generate fitness vector 2 3.5 0.1
SPL Power law expon. of the out-degree distr. | 2 3 0.1
Power law expon. of the in-degree distr. 2 3 0.1
2"-" value is taken from the application graph.
Table 2: Studied parameter values
Distance Random Graphs Model Types
type ER ER BA FF FS SPL
G(n,m) | G(n,p)
Degree 0 1 29 3 0 9
Centrality 0.00% 2.38% 69.05% 7.14% 0.00% 21.43%
Closeness 0 3 32 3 1 3
Centrality 0.00% 7.14% 76.19% 7.14% 2.38% 7.14%
Between. 0 26 11 0 4 1
Centrality 0.00% 61.90% 26.19% 0.00% 9.52% 2.38%
Edge 0 32 9 0 1 0
Difference 0.00% 76.19% 21.43% 0.00% 2.38% 0.00%
Graph 0 1 38 0 2 1
Diffusion 0.00% 2.38% 90.48% 0.00% 4.76% 2.38%
Hamming 0 32 10 0 0 0
0.00% 76.19% 23.81% 0.00% 0.00% 0.00%

Table 3: Cases with minimal network distance

5.14 Results. Network distance metrics were used to determine
which one of the studied model types allows us to generate random
graphs that are close to the real applications. Each metric captures
different structural properties, e.g., Degree Centrality-based distance
metric tends to mark graphs having close degree distributions as
similar, whereas Edge Difference distance metric is small for pairs of
graphs that have similar connections. These differences between
metrics become apparent when looking at Table 3. Here, each row
corresponds to one of the network distance types, and each column
contains the number and percentage of cases with the minimal
distance to the random graphs generated with the model type
specified in the column header.

Since the distances were averaged over 300 generated graphs
for each selected application graph from the dataset, the analysis
of the cases with larger network distances is not provided as the
observed gap between the model exhibiting the minimal distance
and the model with the second smallest distance was higher than
what would be meaningful to consider.

BA excels at capturing structural characteristics used for com-
parison by Degree Centrality, Closeness Centrality, and by Graph
Diffusion distance. ER in its G(n, p) form shows good results for
Betweenness Centrality, Edge Difference distance, and Hamming dis-
tance. However, BA is still in second place with 11, 9, and 10 cases
out of 42 for these distance types correspondingly. In contrast, ER
in its G(n, p) form has less than 6 cases in total marked as simi-
lar to real graphs by Degree Centrality, Closeness Centrality, and
Graph Diffusion distance. Hence, BA captures the properties of the
microservice applications structure nicely.

CASCON’20, November 10-13, 2020, Toronto, Canada

Recalling that the 42 application graphs selected for this study
exhibited power law-like degree distribution, we might find it sig-
nificant that for some metrics, numerous cases result in the ER in its
G(n, p) form. Essentially that means that a combination of BA with
ER in its G(n, p) form could capture the structural properties of
microservice applications better than each of these model types in-
dividually. Such combinations can be enabled by generative models
of graphs acquired with machine learning techniques [8, 22].

Nevertheless, further application-wise study of minimal network
distances demonstrates that Edge Difference distance values for
different models vary weakly; in 32 cases this type of distance
demonstrated the smallest variability when computed for different
models. Thus, we select the BA type as the best representative type
for microservice application graphs.

5.2 Structural Model Generation

We then proceeded to create models that best fit the structures of
our dataset. Studying the parameters of the BA model leading to
minimizing the network distances shows that the change only in
two parameters influences how close the generated graph is to the
real one. These parameters are power of preferential attachment, a,
and attractiveness of vertices with no edges, a. According to BA, a
single vertex is added to the graph at each time step; a new vertex
is attached to old vertices with one or more edges. The probability
of it" vertex to be chosen is given by P; = dff + a, where d; is the
in-degree of this vertex. As we see, higher values of a favor vertices
with more connections, whereas higher a values give vertices with
no connections a chance to establish new ones.

Study of parameters a and a distributions for graphs with min-
imal network distances from the Subsection 5.1.4 allowed us to
find two perspective intervals for each of these: « € [0.01;0.10] U
[0.80;1.00], a € [0.00;0.05] U [3.00; 3.50]. For each interval marked
either as LOW or HIGH, a value close to its middle was selected,
then four possible combinations of these values were acquired to
generate example random graphs according to BA. Parameter edges
to add per time step was set to 1. Generated samples with 18 vertices
are shown in Figure 6.

Visual study shows that sample B in Figure 6 corresponds to
the applications that rely on the common logging service, whereas
sample C represents an application with several auxiliary services
used, e.g., to maintain configurations. Sample D in that sense is
close to applications organized in the conventional multi-tier fash-
ion. Sample A in Figure 6 also finds peers among microservice
applications—these exhibit highly-centralized hierarchical architec-
tures with most of the services using the configuration service.

6 DISCUSSION

The above results lead to several observations on the structure
of microservice applications and how it could be used to assure
software quality attributes.

6.1 Implications of the Microservice
Applications Structure

Studying 103 open-sourced Docker Compose configuration files
discovered the prevalence of microservice applications with a power
law distribution of degrees in the application graph. This structural

Vladimir Podolskiy, Maria Patrou, Panos Patros, Michael Gerndt, and Kenneth B. Kent

feature implies the presence of one or several highly-connected
microservices. Such a microservice application design pattern might
lead to highly vulnerable applications in case microservices with a
high number of connections implement a critical functionality.

In some cases, the microservice with the highest number of con-
nections is just a logging service, hence its failure won'’t influence
SLOs. Thus, structural analysis and modeling of microservice appli-
cations should be enhanced with the analysis of the functional context
such that critical microservices are clearly recognized and are not
mixed with ones that are not critical but are still highly relied
upon. Such information can be used to ensure that the availabil-
ity, throughput and resource requirements are satisfied by helping
decide the appropriate number of critical microservices’ replicas.

Among several graph generation models studied, the BA-model
demonstrated an ability to capture the degree distribution of the
microservice application using relatively small intervals of values
for its parameters power of preferential attachment and attractive-
ness of vertices with no edges. Changing these parameters means
modifying the number of connections that few nodes have (first
parameter) and changing the number of nodes central to some local
clusters of nodes (second parameter). A high value of the parameter
attractiveness of vertices with no edges allows us to model fairly
complex graphs with several “centers of attraction".

The study of network distances between generated random
graphs and 42 microservice applications graphs underlines that
one model cannot convey all the properties of the microservice
application structure. This can be solved via analytical models that
generate random graphs exhibiting characteristics of several mod-
els: consider similar work by Solé et al. [30] or by learning a deep
generative graph model on a representative set of examples [22].

Both simple and hybrid random graph models can be employed
to synthesize structures that correspond to real microservice ap-
plications. Varying the parameters of such models would enable
capturing the peculiarities of a microservice application’s struc-
ture. As one can select the number of vertices and edges for such
models arbitrarily, the absence of large open-sourced microservice
applications does not hinder the design and evaluation of algo-
rithms utilizing in some way the information on the applications’
structures. However, with the simplifications that could be made
when identifying the appropriate random graph model (e.g., omit-
ting information on types of services), it may become necessary
to validate the model manually by developing a sample large-scale
microservice application with limited functionality.

The analysis of the microservice application’s structures in the
paper is based on the degree of graph vertices. This could be viewed
as a limiting factor as the graph abstraction offers a rich set of
parameters to study the microservice structure in-depth, e.g., vertex
connectivity or isoperimetric number. For example, one could think
of studying the vertex connectivity of the microservice applications’
graphs to identify the cornerstone services whose removal, say
due to failure, damages the functionality of the application. An
isoperimetric number can be used in studies of potential bottleneck
services. Consideration of these parameters was deemed beyond
the scope of this paper.

The conducted structural analysis makes a strong assumption
that the application is static, which in practice does not always
hold true. Addition and removal of microservices over time is a

120

The Weakest Link: Revealing and Modeling the Architectural Patterns of Microservice Applications

A) Power of preferential attachment = 0.05 [LOW] ,
edges to add per timestep =1,
attractiveness of vertices with no edges = 0.01 [LOW]

C) Power of preferential attachment = 0.05 [LOW] ,
edges to add per timestep =1,
attractiveness of vertices with no edges = 3.25 [HIGH]

® 9
®

®

®
®
o ®
®

ede

0%
®®

@

CASCON’20, November 10-13, 2020, Toronto, Canada

B) Power of preferential attachment = 0.9 [HIGH] ,
edges to add per timestep =1,
attractiveness of vertices with no edges = 0.01 [LOW]

@
@ A
@

® ©

D) Power of preferential attachment = 0.9 [HIGH] ,
edges to add per timestep =1,
attractiveness of vertices with no edges = 3.25 [HIGH]

@
@

@
@@

Figure 6: Random Graphs generated using BA with four parameter. Number of nodes: 18.

normal practice for such applications. Dynamic graph analysis of
the microservice application will lead to models that capture the
evolution of the application. In turn, such models could contribute to
increasing the accuracy of predictive autoscaling by incorporating
the knowledge of potential structural changes in the model.

6.2 Application Structure towards assuring
Software Quality Attributes

Knowing an application’s structure can contribute to quality assur-
ance of the application across the software life cycle:

Scalability and Availability. Revealing the relationship be-
tween scaling events and applications’ capacity will lead to the fine
tuning of the scaling actions; instead of individual scaling actions
one might speak of scaling action cascades directed by the struc-
ture of an application and capacities of microservices. We believe
that the adaptation of the microservice applications to changing
workloads can be improved by including the application structure
into the set of autoscaling parameters. Such improvements for real
elastic microservice applications hosted in the cloud can result in
better quality of service and budget savings, therefore it seems
necessary to consider the application structure when scaling.

Testability and Correctness. We identified and replicated the
applications’ architectures. To this end, realistic benchmarks can
be created using these models as a generic template. The templates
can be used in the testing process for the product or for cases that

121

the product acts as an input for other applications. Additionally,
computationally expensive quality assurance methodologies, such
as formal verification, could be better targeted towards the various
soft points in a topology of an application.

Security and Reliability. The identification of the weakest link
service with the most services that depend on it can help to make
precautions for protecting the applications in advance or making
changes in the infrastructure to make it safer from attacks. More
specifically, certain rollback policies can be applied based on the
service dependencies in case they go offline.

Performance efficiency. The weakest link services can be de-
ployed based on their connectivity. Certain resources can favour
certain types of services to achieve better response times and thus
better performance. The configuration of a service-container can
be set to allow for more hardware resources on critical services
than on less critical ones.

Adaptivity. From a self-adaptive systems perspective, being
able to create and analyze models of one’s composition is a crucial
self-* property that can be used to analyze and plan adaptation such
that various quality attributes (or setpoints/goals) are satisfied.

Finally, the application topology reveals the strongest link. By
making certain design choices that will shift the load from the
strongest to the weakest service can help towards the application
quality, as well.

CASCON’20, November 10-13, 2020, Toronto, Canada

7 CONCLUSION AND FUTURE WORK

The study discovered degree distributions that are widely-present
in graphs of 103 open-sourced microservice applications: power
law, uniform, and normal. Looking closer at 42 applications that
exhibited power law-like degree distribution allowed us to discover
that BA-based random graphs capture the structure of real microser-
vice applications well. By employing this model, one can synthesize
random graphs with a large number of vertices that capture the
structural properties of microservice applications.

The study paves the way towards larger and systematic empirical
studies of how microservice applications tend to be structured,
resulting in new heuristic algorithms for improved scaling, self-
protection from targeted attacks, testing and system administration.
Revealing and generating models based on their connectivity, while
viewing an application as a directed graph of services, can be very
helpful for application evolution.

The following future research directions appear to have signif-
icant utility in microservice applications deployment and man-
agement: customized analytic and machine learning-based graph
models to generate random graphs; extension of the structural
modeling and analysis with microservice types; extending graph
models capturing properties of microservice applications with other
graph characteristics and building dynamic graph models to predict
structural changes. The main limiting factor for the research of
microservice application structures is the novelty of the concept
and limited public availability of real microservice applications.
With the continuing adoption of the microservice architecture for
cloud-native applications, more data would become available in
public repositories and more mining-based research can be done.
With more publicly available knowledge, we aim to explore fur-
ther types of applications that use certain programming languages
and frameworks to reveal even more aspects of the status quo of
software products.

ACKNOWLEDGMENTS

This work was supported by AWS research program Cloud Credits,
STRATUS, a project funded by New Zealand’s Ministry of Business,
Innovation and Employment (MBIE), the Natural Sciences and En-
gineering Research Council of Canada (NSERC) and Canada’s New
Brunswick Innovation Fund (NBIF). We also thank Stephen MacKay
for his careful proofreading and editing the paper to improve its
quality. We also thank anonymous reviewers for their comments
which we tried to address in the final version of the paper.

REFERENCES

[1] 2020. Docker compose files to analyze structural patterns of containerized
microservice applications. https://doi.org/10.5281/zenodo.3573846. [Online;
accessed 8-June-2020].

[2] 2020. The Official YAML Web Site. https://yaml.org/. [Online; accessed 26-
March-2020].

[3] Réka Albert and Albert-Léaszl6 Barabasi. 2002. Statistical mechanics of complex
networks. Rev. Mod. Phys. 74 (Jan 2002), 47-97. Issue 1.

[4] Albert-Laszl6 Barabasi and Réka Albert. 1999. Emergence of Scaling in Random

Networks. Science 286, 5439 (1999), 509-512.

Albert-Lasz16 Barabasi and Marton Posfai. 2016. Network science. Cambridge

University Press, Cambridge. http://barabasi.com/networksciencebook/

[6] R.Birke,J. F. Perez, Z. Qiu, M. Borkqvist, and L. Y. Chen. [n.d.]. sPARE: Partial
Replication for Multi-tier Applications in the Cloud. IEEE Transactions on Services
Computing ([n.d.]), 1.

(5

=

Vladimir Podolskiy, Maria Patrou, Panos Patros, Michael Gerndt, and Kenneth B. Kent

[7] J. Bogner, J. Fritzsch, S. Wagner, and A. Zimmermann. 2019. Microservices in
Industry: Insights into Technologies, Characteristics, and Software Quality. In
2019 IEEE International Conference on Software Architecture Companion (ICSA-C).
187-195.

[8] Aleksandar Bojchevski, Oleksandr Shchur, Daniel Ziigner, and Stephan Giinne-
mann. 2018. NetGAN: Generating Graphs via Random Walks. In ICML.

[9] Phillip Bonacich. 1987. Power and Centrality: A Family of Measures. Amer. J.
Sociology 92, 5 (1987), 1170-1182.

[10] Fan Chung and Linyuan Lu. 2002. Connected Components in Random Graphs
with Given Expected Degree Sequences. Annals of Combinatorics 6, 2 (01 Nov
2002), 125-145.

[11] Rhys Compton, Eibe Frank, Panos Patros, and Abigail Koay. 2020. Embedding Java

classes with code2vec: improvements from variable obfuscation. In IEEE/ACM

17th International Conference on Mining Software Repositories (MSR 2020). ACM.

Gabor Csardi and Tamas Nepusz. 2006. The igraph software package for complex

network research. Interjournal Complex Systems (2006), 1695. http://igraph.org

Paul Erd6s and Alfréd Rényi. 1959. On Random Graphs 1. Publicationes Mathe-

maticae (Debrecen) 6 (1959 1959), 290-297.

[14] M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen, and M. Villari. 2016. Open Issues

in Scheduling Microservices in the Cloud. IEEE Cloud Computing 3, 5 (Sep. 2016),

81-88.

K.-I. Goh, B. Kahng, and D. Kim. 2001. Universal Behavior of Load Distribution

in Scale-Free Networks. Phys. Rev. Lett. 87 (Dec 2001), 278701. Issue 27.

W. Hasselbring and G. Steinacker. 2017. Microservice Architectures for Scalability,

Agility and Reliability in E-Commerce. In 2017 IEEE International Conference on

Software Architecture Workshops (ICSAW). 243-246.

Adery C. A. Hope. 1968. A Simplified Monte Carlo Significance Test Procedure.

Journal of the Royal Statistical Society. Series B (Methodological) 30, 3 (1968),

582-598. http://www.jstor.org/stable/2984263

Docker Inc. 2020. Compose file version 3 reference. https://docs.docker.com/

compose/compose-file/. [Online; accessed 26-June-2020].

Steffen Kachele and Franz J. Hauck. 2013. Component-based Scalability for Cloud

Applications. In Proceedings of the 3rd International Workshop on Cloud Data and

Platforms (CloudDP ’13). ACM, New York, NY, USA, 19-24.

Robert V. Krejcie and Daryle W. Morgan. 1970. Determining Sample Size for

Research Activities. Educational and Psychological Measurement 30, 3 (1970),

607-610.

[21] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2005. Graphs over Time:

Densification Laws, Shrinking Diameters and Possible Explanations. In Proceed-

ings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery

in Data Mining (KDD ’05). ACM, New York, NY, USA, 177-187.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. 2018.

Learning Deep Generative Models of Graphs. arXiv:cs.LG/1803.03324

[23] X.Liu,]J. Heo, and L. Sha. 2005. Modeling 3-tiered Web applications. In 13th IEEE

International Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems. 307-310.

S. Malkowski, M. Hedwig, and C. Pu. 2009. Experimental evaluation of N-tier

systems: Observation and analysis of multi-bottlenecks. In 2009 IEEE International

Symposium on Workload Characterization (IISWC). 118-127.

[25] G. Marquez, M. M. Villegas, and H. Astudillo. 2018. An Empirical Study of
Scalability Frameworks in Open Source Microservices-based Systems. In 2018
37th International Conference of the Chilean Computer Science Society (SCCC).
1-8.

[26] V. Podolskiy, M. Mayo, A. Koay, M. Gerndt, and P. Patros. 2019. Maintaining
SLOs of Cloud-Native Applications Via Self-Adaptive Resource Sharing. In 2019
IEEE 13th International Conference on Self-Adaptive and Self-Organizing Systems
(SASO). 72-81.

[27] Nigel Poulton and Pushkar Joglekar. 2019. The Kubernetes Book (fourth ed.).

[28] J.F. Pérez, L. Y. Chen, M. Villari, and R. Ranjan. 2018. Holistic Workload Scaling:
A New Approach to Compute Acceleration in the Cloud. IEEE Cloud Computing
5,1 (Jan 2018), 20-30.

[29] S.S. Shapiro and M. B. Wilk. 1965. An analysis of variance test for normality
(complete samples)t. Biometrika 52, 3-4 (1965), 591-611.

[30] Ricard V Solé, Romualdo Pastor-Satorras, Eric Smith, and Thomas B Kepler. 2002.
A model of large-scale proteome evolution. Advances in Complex Systems 05, 01
(2002), 43-54.

[31] M. A. Stephens. 1974. EDF Statistics for Goodness of Fit and Some Comparisons.

J. Amer. Statist. Assoc. 69, 347 (1974), 730-737.

Q. Wang, Y. Kanemasa, J. Li, D. Jayasinghe, T. Shimizu, M. Matsubara, M. Kawaba,

and C. Pu. 2013. Detecting Transient Bottlenecks in n-Tier Applications through

Fine-Grained Analysis. In 2013 IEEE 33rd International Conference on Distributed

Computing Systems. 31-40.

Qingyang Wang, Y. Kanemasa, J. Li, D. Jayasinghe, T. Shimizu, M. Matsubara,

M. Kawaba, and C. Pu. 2013. An Experimental Study of Rapidly Alternating

Bottlenecks in n-Tier Applications. In 2013 IEEE 6th International Conference on

Cloud Computing (CLOUD), Vol. 00. 171-178.

[12

[13

[15

[16

=
=

(18

[19

[20

~
oS

[24

[32

[33

122

https://doi.org/10.5281/zenodo.3573846
https://yaml.org/
http://barabasi.com/networksciencebook/
http://igraph.org
http://www.jstor.org/stable/2984263
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
http://arxiv.org/abs/cs.LG/1803.03324

Report on Evaluation Experiments Using Different Machine
Learning Techniques for Defect Prediction

Marios-Stavros Grigoriou
Dept. of Computer Science
Western University
London, ON, Canada
mgrigori@uwo.ca

Alberto Giammaria
Austin Laboratory
IBM
Austin, TX, USA
agiammaria@us.ibm.com

ABSTRACT

With the emergence of Al it is of no surprise that the applica-
tion of Machine Learning techniques has attracted the attention
of numerous software maintenance groups around the world. For
defect proneness classification in particular, the use of Machine
Learning classifiers has been touted as a promising approach. As a
consequence, a large volume of research works has been published
in the related research literature, utilizing either proprietary data
sets or the PROMISE data repository which, for the purposes of
this study, focuses only on the use of source code metrics as defect
prediction training features. It has been argued though by several
researchers, that process metrics may provide a better option as
training features than source code metrics. For this paper, we have
conducted a detailed extraction of GitHub process metrics from 148
open source systems, and we report on the findings of experiments
conducted by using different Machine Learning classification algo-
rithms for defect proneness classification. The main purpose of the
paper is not to propose yet another Machine Learning technique
for defect proneness classification, but to present to the community
a very large data set using process metrics as opposed to source
code metrics, and draw some initial interesting conclusions from
this statistically significant data set.

CCS CONCEPTS

. Software and its engineering — Software testing and de-
bugging; Maintaining software; Software version control.

ACM Reference Format:

Marios-Stavros Grigoriou, Kostas Kontogiannis, Alberto Giammaria, and Chris
Brealey. 2020. Report on Evaluation Experiments Using Different Machine
Learning Techniques for Defect Prediction. In Proceedings of CASCON’20:.
ACM, New York, NY, USA, 10 pages.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CASCON’20:, Nov 10-13, 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

123

Kostas Kontogiannis
Dept. of Computer Science
Western University
London, ON, Canada
kostas@csd.uwo.ca

Chris Brealey
Toronto Laboratory
IBM
Toronto, ON, Canada
cbrealey@ca.ibm.com

1 INTRODUCTION

The problem of classifying a file as failure prone or not has at-
tracted the attention of the software engineering community early
on. Early approaches focused on the use of software metrics to com-
pute maintainability and software health indexes [2] [18]. These
approaches were based on the compilation of linear or non-linear
formulas to yield maintainability indexes which were assumed to
be associated with the overall health of a component or a system.
In this respect, the assumption was that a higher maintainability
index would indicate a software component (function, method, file,
or module) that has a low probability of exhibiting a failure. As
research progressed in this field, the software engineering com-
munity experimented with approaches focusing on the static and
dynamic analysis as well as the analysis of project data, such as the
number, type and time interval between bug fixes [7] [16]. These
approaches utilized statistical analyses and heuristics to experimen-
tally yield predictions related to the fault-proneness of a software
component. However, over the past few years, research in this area
has decisively shifted towards the use of Machine Learning (ML)
techniques. These techniques aim to first identify a collection of
source code related and process related features which can serve as
classifiers for fault-proneness, and second apply these features for
training ML models using a variety of ML algorithms (see Section
2). Once such models are trained the premise is that they can be
used to classify whether a newly seen software component is defect
prone or not.

The challenge that arises using such ML techniques is that they
yield models which perform as black boxes and do not provide any
explanation on how their results have been reached, as they are
purely dependent on the training data set provided, and the ML
algorithm used. Another challenge that arises is when ML models
are trained on source code metrics alone. Large software systems
are rarely implemented using a single programming language and
are often composed of a collection of different frameworks, config-
uration scripts and dynamically linked components. That makes
the extraction of accurate source code metrics an almost impossible
task. On the contrary, process related metrics can be extracted quite
accurately and easily from various DevOps tools such as GitHub,
Jira, Jenkins, and Slack.

CASCON’20, November 10 - 13 2020, Toronto, Canada

In this context, this paper aims to shed light on two major is-
sues.The first issue is to identify, through the use of process metrics
and extensive experimentation, the technique, or the combination
of techniques and features, that best classify whether a software
component (i.e. file) can be considered defect prone or not. The
second issue is whether process metrics can be used instead of
source code metrics and whether these can be used to train models
that yield similar of better classification results in a single project or
across projects. These two issues can be formalized by four related
research questions as follows:

ROQ1: By using a very large set of open source projects to experiment
with, which is the best combination of classifiers which are
fast, easily trainable and able to yield the best results as these
are measured in terms of accuracy, precision, recall, F1, and
AUC?

RQ2: What is an optimal subset of available process metrics which
can be easily calculated and at the same time yield the best
results when provided as input to different classifiers?

RQ3: Is it possible to perform defect-proneness classification using
process metrics while maintaining classification performance
measures comparable to similar techniques reported in the
literature which use source code metrics?

RQ4: Is it possible to perform cross project defect proneness classi-
fication in the sense that data from different projects can be
used to train a model which will then be used to perform defect
proneness prediction on other unknown projects for which not
enough training data may be available?

For this paper we take an experimental approach, aiming to draw
conclusions by applying the techniques under examination to a
very large collection of open source projects. More specifically, we
have considered a collection of 148 open source systems from which
we have extracted various process metrics utilising a custom-made
extraction tool. The open source projects were selected based on
their complexity, size, prevalence, and the quality and availability
of process repository data. The importance of the work reported in
this paper lies on two parts. First, in the best of our knowledge, it is
the first work which utilises such a large data set of 148 open source
systems, providing thus a much more statistically significant result
than previously reported works, and second providing answers
to research questions which can assist researchers advance the
state-of-the-art in the area.

The paper is organised as follows. Section 2 presents related
work. Section 3 discusses the features and the feature extraction
process. Section 4 presents the different Machine Learning tech-
niques which we have evaluated. Section 5 presents the results
obtained, while Section 6 discusses and interprets the obtained re-
sults. Finally, Section 7 concludes the paper and offers pointers for
future work.

2 BACKGROUND

In the related literature there is a wealth of approaches for defect
prediction using Machine Learning techniques. Two widely-used

124

Grigoriou and Kontogiannis et al.

defect prediction techniques are regression and classification. The
main purpose of regression techniques is to estimate the number of
software defects on a software component. In contrast, classification
techniques aim to tag whether a software module is faulty or not.
It has been shown that classification models can be trained from
defect data on earlier versions of the system being analyzed. Some
of the most commonly used supervised learning techniques for
defect prediction are outlined below.

Decision Trees (DT): Decision tree algorithms use tree structures
to model decisions and their possible consequences. In decision
trees, each leaf node corresponds to a class label while attributes
are represented as internal .

Logistic Regression (LR): Logistic regression is a supervised clas-
sification algorithm whereby the target variable O (i.e output), can
take on values in the interval [0, 1] representing the probability for
a given set of input features I to belong to class 1 or 0.

Random Forest (RF): RF is an ensemble type of learning method
used for both classification and regression problems. The key idea
behind RF is the construction of several decision trees at training
time and outputting the mode/mean prediction of the individual
trees.

Support Vector Machine (SVM): SVM is a discriminative classifier
formally defined by a separating hyperplane. In SVMs, given a
labeled training data set whereby each data item is marked as
belonging to one or the other of two categories, the algorithm
outputs an optimal hyperplane, which classifies new unseen data
in one of these two categories.

k-Nearest Neighbors (k-NN): k-NN is a non-parametric method
that can be used for both classification and regression problems.
In both cases, the input consists of the k closest training examples
in a feature space. The output depends on whether k-NN is used
for classification or regression. In classification, the output is to
categorize an input to one of equivalence classes. In regression, the
output is to assign a value to the input, usually the average of the
values of its closest k-neighbors.

Naive Bayes Classifiers (NB): These classifiers refer to a family of
simple "probabilistic classifiers" based on applying Bayes’ theorem
and by considering a strong independence assumption between
features, that is the presence or absence of a particular feature of a
class is not related to the presence or absence of any other feature.

Neural Networks (NN): Neural Networks are nonlinear predictive
structures that consist of interconnected processing elements called
neurons that work together in parallel within a network to produce
output, often simulating an unknown function or phenomenon.

Multi-layer Perceptron (MLP): MLPs refer to a class of feedforward
artificial neural network (ANN). An MLP comprised of a directed
graph of multiple layers of nodes which are fully connected to
the nodes of the next layer. For training purposes, MLP utilizes a
supervised learning technique defined as backpropagation.

Radial Basis Function (RBF) Networks: RBF Networks are a type
of ANNs used to approximate through training the value of an
unknown function. They are different from MLPs in the sense that
they are feedforward networks comprising of only three layers, the
input layer, the hidden layer and the output layer.

CASCON’20, November 10 - 13 2020, Toronto, Canada

2.1 Defect Prediction using Machine Learning

A variety of machine learning methods have been proposed and
assessed for addressing the software bug prediction problem. These
methods include decision trees [24], neural networks [32, 39], Naive
Bayes [12, 15, 34], support vector machines [5], Bayesian networks
[27] and Random Forests [1].

2.1.1 Source CodeMetrics Approaches. Deciding whether a compo-
nent has a high likelihood to be defective or not has been proved
to have a strong correlation with a number of software metrics.
Identifying and measuring software metrics is vital for various
reasons, including estimating program execution, measuring the
effectiveness of software processes, estimating required efforts for
processes, estimating the number of defects during software de-
velopment as well as monitoring and controlling software project
processes [29] [6]. Various software metrics have been commonly
used for defect prediction, including lines of code (LOC) metrics,
McCabe metrics, Halstead metrics, and object-oriented software
metrics. Hence, the automated prediction of defective components
from extracted software metrics evolved as a very active research
area. [14]. In [26], Nagappan aims to find the best code metric to
predict bugs. The conclusion of this work is that complexity metrics
can successfully predict post-release defects, but there is no single
set of metrics that is applicable to all systems. Hassan et. al have
investigated the impact of different aspects of the modelling process
to the end results and the interpretation of the models [4] [3] [11]

(8.

2.1.2 Process Metrics Approaches. In [19], Venkata et. al compared
different machine learning models for identifying faulty software
modules and they found that there is no particular learning tech-
nique that performs the best for all the data sets. In [36], Wang and
Yao aim to find bugs without decreasing the overall performance of
the model. In this process, they find that imbalanced distribution
between classes in bug prediction is the root cause of its learn-
ing difficulty. Likewise, in our paper, we noted the issue and used
re-sampling as described in detail in the section 4.3 in an effort
to minimise the impact of class imbalance to the quality of our
results. Similarly, in [17], Zimmermann et. al propose an approach
to predict bugs on cross-language systems. The work examined a
large number of such systems and concluded that only 3.4% of the
systems had precision and recall prediction levels above 75% . The
authors also tested the influence of several factors on the success of
cross-language prediction and concluded that there was no single
factor which led to such successful predictions. The authors used
decision trees to train the model and to estimate precision, recall,
and accuracy before attempting a prediction across systems. Lastly,
in [23], Hassan discusses how frequent source code “commits” in
the repository negatively affect the quality of the software system,
meaning that the more changes incurred to a file, the higher the
chance that the file will contain critical errors. Furthermore, the
author in [23] presents a model which can be used to quantify
the overall system complexity using historical code-change data,
instead of plain source code features.

125

Grigoriou and Kontogiannis et al.

3 DATA MODELING

For the purposes of this study we have designed two separate data
models. The first data model denotes the raw information which
can be mined from software repositories, while the second data
model denotes the post-processed raw data which are in a form
that can be consumed by the machine learning algorithms we have
experimented with.

The design goal of the first data model was to have a structure
which would be easy to populate while maintaining a low memory
profile, would facilitate data reconciliation of data entries originat-
ing from different devOps tools (e.g. GitHub, Jenkins, Jira), would
be scalable, and would be able to support preprocessing workflows
of varying complexity at high speeds. The schema for this data
model is depicted in Fig. 1.

The design of the second data model was to have a simple rela-
tional structure which can be easily imported as a tab or comma
delimited file in various machine learning tools and which can be
easily manipulated so that aggregate features can be easily com-
puted. The features in this second data model are depicted in Table
1.

3.1 Raw Data Model

For this study we have exhaustively collected process related met-
rics from 148 open source systems of various sizes and complexities.
The list of the systems along with all the data obtained or com-
puted are listed in the anonymous repository [35].! The profile of
the data set we have considered is depicted in Table 2. The data
acquisition process is based on two steps. The first step is to utilize
a custom made client-side extractor tool which is able to connect to
and reconcile data obtained using various tools and namely GitHub,
Bugzilla, Jira, and Jenkins. However, for this study we report results
on data acquired only from the GitHub repositories of these 148
open source systems. The second step of the raw data acquisition
process is to fuse the information extracted by each repository
record into one repository which conforms to the raw data schema
depicted in Fig. 1. The extractor application and its data fusion
module is implemented using Python 3.

As depicted in Fig. 1, the raw data model is founded on the
concept of a Commit, the concept of a File, and the concept of a
CommitProperties. The extracted information is represented as a
Json file stored in a Mongo DB server. As such, a run-time model
of a GitHub repository was created which held the information
of the unique commit records. Every commit contained a list of
fileChanges and the details for each of these files’ change. This data
model represents a GitHub record structure utilizing simple Python
3 objects which have a very low memory profile and initialization
time.

In this data model a commit is uniquely identified by it’s com-
mitID, it contains attributes specific to it, including the author, the
commit-time, the files committed as these are denoted by their Filelds,
a commit message, the overall lines added, deleted as well as a tag
field maintaining information about wh<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>