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Abstract

The embedded computing market, which includes Internet-of-Things (IoT) and mo-

bile computing devices, is a non-traditional computing market where computation

resources—including CPU, memory, power—are more limited. Due to these limita-

tions, software is required to be more compact and efficient. Providing a managed

runtime, such as Eclipse OpenJ9 built on top of Eclipse OMR, in this climate dif-

fers from a cloud/desktop-based environment. This thesis focuses on porting the

OpenJ9+OMR technology, which has a heritage of running in resource constrained

systems, to a new environment while continuing to provide a generic run-time envi-

ronment. The low-power AArch64 (ARMv8-A) platform—compatible with commonly

used electronic devices—is becoming the answer for resource constrained environments

of embedded systems. This thesis explores the performance of the Just-In-Time

(JIT) compiler in OpenJ9, a Java®1 Virtual Machine (JVM), on an Instruction Set

Architecture (ISA) appropriate for IoT and embedded devices. More specifically, we

evaluate and validate the AArch64 implementation of OpenJ9’s JIT against more

mature architectures currently available. The evaluation reveals performance dis-

crepancies and necessary improvements, beyond those that are already known, by

comparing the AArch64 implementation to another ISA, x86-64. Our work is an

effort to template new architectural support and allow others to follow our model. We

provide a baseline for future research on OpenJ9, OMR and the JIT on the AArch64

platform and outline some improvements as future work.
1Java® is a registered trademark of Oracle and/or its affiliates.
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Chapter 1

Introduction

The AArch64, or ARMv8-A (ARM 64-Bit), Instruction Set Architecture (ISA) is

increasingly a more common platform in the technology ecosystem; this is especially

true for the mobile, embedded and IoT computing spaces [2, 3]. AArch64 is a

RISC-based (Reduced Instruction Set Computer) ISA [4] in contrast to x86-64, a

CISC-based (Complex Instruction Set Computer) ISA. A RISC ISA provides ease of

use from a reduced, and a more general instruction-set, requiring fewer CPU cycles

to execute. A CISC ISA, on the other hand, provides more specialized and complex

instructions, which may take more CPU clock cycles to execute.

The AArch64 architecture is designed with integration into low-power System on

Chips (SoCs) in mind [4]. That being said, because of the low-powered design per-SoC,

AArch64 also lends itself to being packed into larger packages with many cores for use

in the high-performance server space. This multifaceted nature makes the AArch64

an interesting architecture for research investigation.

Java is a high-level language (HLL) that enables programmers to write platform,

architecture and hardware agnostic code; “Write once, run anywhere” [5, 6]. The

language semantics, usage and the Java Class Library (JCL) overall layout is defined

in the Java Language Specification [6]. Java’s popularity has remained strong over

1



Figure 1.1: Java source files (.java) transpiled to Java bytecode files (.class) via
the javac executable.

the years; in 2019, Stack Overflow listed Java as the 5th most used language [7].

This popularity makes Java an interesting language, with many large-scale enter-

prise applications, to target research towards [8]. The Java language framework,

using the javac program, compiles the source into an intermediate bytecode format;

see Figure 1.1.

The Java Virtual Machine (JVM) is the application that executes the end-user Java

programs on the underlying platform, architecture and hardware. A platform-specific

JVM executes Java bytecode on its native architecture. JVMs are implemented

against the JVM Specification [9–11]. There are many implementations of the JVM

(J9, OpenJ9, GraalVM, Hotspot, etc.) [12–17], but we focus on the Eclipse OpenJ9

JVM. Java source files are compiled into Java bytecode, which then can be interpreted

or just-in-time (JIT) compiled by the JVM.

Interpreting the individual bytecode in a simple fetch, decode, emulate pattern, allows

the JVM to have a very low overhead at the cost of performance [18]. Just-in-time

compilation is a form of compilation at runtime that can achieve higher levels of

optimization than interpretation, albeit with more runtime overhead. JIT compilation

is discussed in Subsection 2.3.1.

The remainder of the thesis is organized as follows: background and related work are

in Chapter 2; design and implementation of the OpenJ9 and OMR JIT on AArch64

are presented in Chapter 3; the evaluation and results are discussed in in Chapter 4;

2



Figure 1.2: Java class files executed by a JVM.

with and future work in Chapter 5 and conclusions in Chapter 6.

1.1 Contributions

In this thesis, we focus on bringing Eclipse OpenJ9 and Eclipse OMR’s Just-in-Time

(JIT) compiler to the AArch64 platform. More specifically, we bring AArch64-specific

design and implementation for the following to OpenJ9 and OMR:

• Build (Make and CMake) infrastructure [A1–A3].

• AArch64 JVM platform support (Port Library) [A4].

• Code generation:

– Binary encoding [A5–A7].

– Opcode mnemonics [A5, A7–A9].

– AArch64 GCMaps [A10].

– AArch64 Processor Information [A11].

– Tree Evaluator implementations [A12–A40].

– Testarossa JIT (TRJIT) Code generator helper functions [A41, A42].

– Tril Tests [A43–A47].

– Trampoline support for AArch64 [A48, A49].
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– Store/load/full/allocationFence for AArch64 [A50].

– Unsafe_compareAndSwapInt_jlObjectJII_Z [A51].

• Expansion (Renaissance Suite) and refinement of the benchmarking framework

(Subsection 4.1.2) [19–21].

• Evaluation and validation of the AArch64 implementation of the JIT against a

more mature architecture (Subsection 4.2.1).

– The evaluation reveals performance discrepancies and optimization op-

portunities by comparing the AArch64 implementation to the x86-64

implementation.

• We designed and implemented the AArch64 JIT from scratch using the other

platform’s compilers as templates.

– This required us to make many decisions on how to architect and implement

the AArch64 solution.

– These decisions are explored in Section 3.1.

• Our work is a template for new architectural support and allows others to

follow our model for new architectures.

– This is explored in Section 4.3.

• We provide a baseline for future research on OMR and OpenJ9 on the AArch64

platform.

In terms of novelty of this research, we bring AArch64 support to the Eclipse OpenJ9

JVM, Eclipse OMR and the TRJIT (Testarossa JIT). This allows for an enterprise-

grade AArch64 JVM for ARMv8-A devices, desktops and servers. In the server

space, an example of this platform would be the Cavium-based ThunderX family of

4



servers [22]. In the device space, some examples of this platform would be the the

Pine64 Rock64, the Khadas VIM3 and the Raspberry Pi 4 B (more on these devices

in Subsection 4.1.1). In the desktop space, some examples of this platform would be

the the Apple Silicon M1 chip in the MacBook Pro laptop and Mac Mini desktop [23].

Not only do we bring this support to the OpenJ9 JVM and TRJIT, we provide a

baseline set of results for this implementation to compare back to and we identify

bottlenecks for future improvement. We also provide a template for implementing

architectural support on new and different platforms.

5



Chapter 2

Background

This chapter discusses a number of concepts necessary to provide a background for the

later chapters. These concepts include: virtual machines (VMs) (Section 2.1), Eclipse

OMR and Eclipse OpenJ9 (Section 2.2), VM optimization (Section 2.3) and JVM

evaluation (Section 2.4) in terms of standard benchmarks and Linux performance

tools (Subsection 2.4.2).

2.1 Virtual Machines (VMs)

In this section we discuss VMs (Section 2.1), Interpreters (Subsection 2.1.1) and

the Java Virtual Machine (JVM) (Subsection 2.1.2). Over the last 30-plus years

language Virtual Machines (VMs), also known as process virtual machines or managed

runtimes, have become a very popular mechanism for executing user applications; in

contrast to static compilation (compiled before execution e.g., C, C++, etc.) [18].

Language VMs should not be conflated with hypervisor virtual machines—either level-

1 bare-metal hypervisors (e.g., VMware ESXi, XEN or Proxmox) or level-2 hosted

on an operating system (OS) hypervisors (e.g., Hyper-V, VirtualBox or Kernel-based

Virtual Machine—KVM)—also known as system virtual machines, in this thesis [18,

24–34].
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While many of the mechanisms that enable both types of VMs to function are similar

or the same, for our purposes we focus on high-level language (HLL) Virtual Machines

(VMs) [18]. An HLL VM is designed to execute a platform-agnostic application inside

an operating system on platform-specific hardware [18]. The end goal of using a VM

is to have the generic application operate within that system the same as if it were

natively compiled for that platform [18].

There are two main implementations of VMs: stack-based or register-based [18, 35,

36]. Stack-based VMs push and pop all operands and return values on the stack

during runtime [18, 35, 36]. Stack-based implementations may push and pop the same

operands multiple times to successfully fulfill the user’s application [35, 36]. Register-

based implementations, on the other hand, allocate all values into corresponding

registers in the CPU; the VM operates on the registers’ values. Stack-based VMs

are easier to implement but, due to the issue with multiple pushes and pops on the

same operands, have increased overhead. Register-based VMs, while much harder to

implement, can take advantage of memory and CPU usage optimizations.

2.1.1 Interpreters

The main mechanism for many HLL VMs is the interpretation of source instructions,

or virtual instructions, to provide the first line of support for executing an end-user’s

application [18, 37]. VM interpreters provide reliable execution of program code.

They interpret in a standard pattern of fetch, decode and emulate the execution of

the individual virtual instructions [18]. VM interpreters have very low overhead, in

terms of startup, compared to other methods of execution. However, interpreted code

is executed slower than native hardware instructions.

7



Figure 2.1: A JVM saves the JIT-ed code to the Shared Class Cache (SCC) for later
Ahead-of-Time (AoT) loading.

2.1.2 The Java Virtual Machine (JVM)

The JVM is the application that interprets, or runs, the agnostic end-user Java

programs on the underlying platform, architecture and hardware. A platform-specific

JVM executes Java bytecode on its native architecture. JVMs are implemented

against the JVM Specification [9–11]. There are many implementations of the JVM

(J9, OpenJ9, GraalVM, Hotspot, etc.) [12–17], but we focus on one implementation,

Eclipse OpenJ9, as discussed in Subsection 2.2.2. As mentioned in Chapter 1, we

see in Figure 1.2 Java source files compiled into Java bytecode, which then can be

interpreted or just-in-time (JIT) compiled by the JVM. Just-in-time compilation is a

form of compilation at runtime that can achieve higher levels of optimization than

interpretation, albeit with an increased one-time runtime overhead. This additional

overhead is required to perform the optimization itself, however, this one-time cost is

considered minor and it is amortized over the entire runtime of the user application

in the JVM. JIT compilation is touched on more in Subsection 2.3.1.

We see in Figure 2.1 some JVMs take the just-in-time compiled (JIT-ed/JIT compiled)

code from an application’s run and save it to a data store, sometimes called a Shared

Class Cache (SCC), for loading into a subsequent JVM run. This subsequent load

can be seen in Figure 2.2. This later loading of previously JIT-ed code is called

Ahead-of-Time (AoT) compilation.
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Figure 2.2: Ahead-of-Time (AoT) load of JIT-ed code, originating in a previous JVM
execution, from the SCC into a subsequent JVM run.

2.2 Eclipse OMR and Eclipse OpenJ9

In this section, we discuss Eclipse OMR (Subsection 2.2.1), the Eclipse OpenJ9 JVM

(Subsection 2.2.2) and the IBM J9 JVM (Subsection 2.2.3).

2.2.1 Eclipse OMR

Eclipse OMR is an open-source toolkit of language-agnostic, C and C++, components

that can be used to build robust language runtimes to support many different

hardware and operating system platforms [38–45]. These components include a

garbage collector, a just-in-time compiler, the JitBuilder API, a platform support

library, a threading library and a signal handling library. Of note here is JitBuilder,

a simplified way to incorporate OMR’s TRJIT technology into a front-end language.

However, OpenJ9 discussed in Subsection 2.2.2, hooks directly into TRJIT in OMR,

bypassing the JitBuilder interface entirely. Eclipse OMR originated as the language-

agnostic VM core of the IBM closed-source J9 JVM. Due to the many enterprise-grade

optimizations made to Eclipse OMR and its predecessors, it makes an interesting

9



platform for the exploration of new architectures. In this case, basic support for

AArch64, primarily the framework necessary for the interpreter to work, exists in

OMR. Adding a JIT compiler is investigated and implemented as a part of this

research work.

2.2.2 The Eclipse OpenJ9 JVM

Eclipse OpenJ9 is a Java Virtual Machine for OpenJDK that consumes the Eclipse

OMR toolkit and libraries for its language-agnostic components [12, 13, 46]. Eclipse

OpenJ9, built on top of Eclipse OMR, already has AArch64 support for running

end-user Java applications via interpretation. As of the time of writing, early releases

of an AArch64 OpenJ9 OpenJDK11 are hosted by AdoptOpenJDK; going forward,

IBM will host the binaries themselves as the “IBM Semeru Runtimes” [47, 48]. These

releases contain previous work and ongoing work on the AArch64 JVM and JIT [49,

50]. Eclipse OpenJ9 and Eclipse OMR are consumed as a part of IBM’s enterprise J9

JVM, discussed in Subsection 2.2.3. Many components for the AArch64 JIT reside

in Eclipse OMR, but several components live in Eclipse OpenJ9 as well. So given

we cannot do a practical test of the AArch64 JIT with just OMR alone and that

there are some interesting Java-specific JIT components in OpenJ9, we look at both

Eclipse OpenJ9 and Eclipse OMR together for this work.

2.2.3 The IBM J9 JVM

The J9 JVM is IBM’s enterprise-grade implementation of the Java Language and

Virtual Machine Specifications [6, 10, 11, 51]. J9 contains decades of IBM developer-

years of optimized implementation [52]. The current blueprint of J9 consumes

Eclipse OMR and Eclipse OpenJ9 with some extra IBM “secret sauce” (e.g., special

cryptographic libraries, etc.) on top; this is what separates IBM J9 from Eclipse

OpenJ9. This consumption means that all retained, GitHub contributed, development

10



efforts and optimizations eventually make it into the IBM’s enterprise J9 JVM.

2.3 Optimization

In this section, we will discuss optimizations from VM JIT compilation (Subsec-

tion 2.3.1) and specifically the Eclipse OpenJ9 JVM Testarossa JIT compiler (Sub-

section 2.3.2).

2.3.1 VM Just-In-Time (JIT) Compiler

Just-in-time compilation, or dynamic compilation, is a mechanism that VMs can use

to improve performance [14–16, 18]. The VM uses profiling data, usually run-time

profiling data, to determine the temperature of code blocks. A temperature gradient,

or hotness, is used to describe the frequency at which a function is used: cold, warm,

hot, very-hot or scorching; where a hotter function or method is where more time is

being spent (i.e., code blocks infrequently executed are called cold, code executed

occasionally is referred to as warm and blocks frequently executed are considered hot,

etc.). Profiling provides the information required to decide which discrete blocks of

code are considered ideal for optimizing [53]. Once this hotness threshold is reached,

JITs compile the equivalents to the source instructions on the native platform; this

natively compiled code is also known as generated code. Once generated, the VM

then executes the native code instead of interpreting the bytecode on subsequent

executions. The VM only falls back to the much slower interpreted version if JIT-

generated code is not available in the code cache [37]. JITs enable VMs to attain

increased performance over the long term of that VM’s execution. Because the JIT

takes CPU execution time away from the end-user’s program, JITs increase startup

time overhead [54].
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Figure 2.3: The JVM’s tight execution loop for interpretation and execution of
JIT-compiled code.

2.3.2 The Eclipse OpenJ9 JVM Testarossa JIT (TRJIT)

The Testarossa JIT, or TRJIT, is the multi-pass optimizer and JIT compiler com-

ponent of Eclipse OMR, and by extension, Eclipse OpenJ9 [53, 55]. TRJIT is the

primary component that we focus upon in this research. TRJIT has been heavily

optimized to generate extremely performant native code and also offers tiered levels

of compilation for the purposes of optimization. Generated code, if sufficiently hot,

can be re-compiled at a higher level of optimization, albeit with added CPU and

memory overhead on each re-compilation. Because of this, TRJIT can sometimes

be a heavy-weight option, with a significant CPU overhead and consuming much

memory. This thesis investigates and implements TRJIT on the AArch64 platform

and focuses on possible TRJIT optimizations for resource-constrained or embedded

environments.
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Figure 2.4: Tiered Compilation.

In Figure 2.3, we see the JVM’s tight execution loop, or bytecode loop, for interpreta-

tion and JIT compilation. The bytecode loop is a continuance engine; it processes one

bytecode from the incoming stream after the next until the user’s program finishes

execution. This is an implementation of the classic fetch-decode-execute paradigm. For

each encounter of a method signature, the JVM checks whether this method has been

JIT-compiled already; if so, it executes the natively compiled code. If the method has

not been JIT-ed yet, it increments a counter representing the number of times this

method has been encountered in the runtime of the user’s application. The JVM then

checks to see if this counter has passed a threshold. If not, the bytecode for a method

falls-back to being interpreted by the JVM’s C-based interpreter. Otherwise, the

JVM starts JIT compilation of this method, and once the method has been JIT-ed,

the JVM puts a pointer in the method’s class structure to the native code [18]. This

method is no longer interpreted during future encounters and executes the optimized

version instead. This JIT compilation of the method happens asynchronously in a

separate JIT compilation thread to avoid hanging the user application’s mutator

thread [56, 57]. After initiating the JIT compilation, the bytecode loop continues

invoking the JVM’s interpreter and proceeds with the next bytecode. Once the JIT

compilation thread is finished JIT-ing the method, subsequent encounters execute

the JIT-ed code instead of interpreting.
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Figure 2.5: The JVM’s recompilation loop for interpretation and execution of JIT-
compiled code.
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If a method is encountered enough it is re-compiled to a higher tier of compilation.

Figure 2.4 shows us the levels of tiered compilation in the JVM’s JIT compiler. The

tiers start with Interpreted/noOpt; this results in the method either being directly

interpreted or being JIT-compiled at a level of no-Optimization (noOpt). This

noOpt level of JIT compilation often uses a simple template compilation mechanism,

where the form of the method is identified and the equivalent non-optimized code is

substituted [58, 59]. The next tiers of compilation are cold, warm, hot and very-hot.

At each of these levels, the JIT re-compiles the previously JIT-ed code at levels

of increasingly aggressive optimization. After the very-hot tier, a special very-hot

profiling level of compilation is employed. This profiling phase inserts profiling

code into the JIT-ed native code of the very-hot tier, which provides meta-data

on subsequent executions of that method. Once sufficient profiling metadata is

recorded, a final tailored scorching tier is JIT compiled based on the data. This

form of tiered compilation, and re-compilation, is an important process for selectively

minimizing CPU and memory overhead. This is the classic time/space vs. optimization

compromise. The JVM uses these counters/thresholds for initiating the specific levels

of optimized compilation. Figure 2.5 shows us the workflow for deciding if re-

compilation to a higher level of optimization is warranted in the JVM’s JIT compiler.

The JVM assumes that if a method has been encountered n times, it is worth spending

the time to compile and using the space to store a more optimized version of the

method, as the method is likely to be encountered many more times.

2.4 Evaluation

In this last section, we discuss some of the benchmarks chosen (Subsection 2.4.1)—DaCapo

(Subsection 2.4.1.1), SciMark (Subsection 2.4.1.2), SPECjvm®20081 (Subsection 2.4.1.3)
1SPECjvm® and SPECjbb® are registered trademarks of Standard Performance Evaluation

Corporation (SPEC®)

15



and the Renaissance Suite (Subsection 2.4.1.4). We will also look at Linux Perfor-

mance “Perf” Tools (Subsection 2.4.2).

2.4.1 Benchmarking

In this sub-section, we discuss the benchmarks and why they were chosen.

2.4.1.1 DaCapo Benchmarks

The DaCapo benchmark is a very popular set of workloads used in evaluating

implementations and incremental improvements of a JVM [60, 61]. A key goal of

DaCapo is its focus on “real-world” applications over synthetic benchmarks that

some other suites use. DaCapo also prioritizes the low barrier to entry for use and for

gathering measurements. The selection of included applications is meant to provide

coverage of a large number of real-world applications [60, 62]. The workloads include

avrora (sensor network simulator that performs accurate event simulation in a parallel

fashion), fop (print formatter that is output-independent), h2 (an in-memory Java

database), jython (Java-based Python interpreter), luindex (text indexer), lusearch

(text searcher), pmd (Java source code analysis), sunflow (ray tracing graphical

renderer) and xalan (XSLT processor to aid in transforming XML documents) [60,

62].

2.4.1.2 SciMark Benchmarks

The SciMark suite is composed of a number of mathematical micro-benchmarks [63–65].

The SciMark mathematic micro-benchmarks consist of the following mathematical

algorithms: Fast Fourier Transform (FFT), Jacobi Successive Over-Relaxation (SOR),

Monte Carlo, Sparse matrix multiply and dense LU matrix factorization [63–65].

SciMark comes in two readily available implementations: a Java implementation

and a native C implementation. This provides a unique opportunity, where the C
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statically-compiled version can be taken as a baseline. Then the Java version executed

by a JVM, and its JIT, can then compare a dynamically compiled implementation

back to it. This way, we can analyze incremental performance improvements in a

JVM and a JIT to the native version.

2.4.1.3 SPECjvm®2008 Benchmarks

SPECjvm®20082 is an industry standard benchmark in the JVM field [61, 66, 67].

SPECjvm®2008 and its fore-bearers have been used as the standard measuring

stick on incremental JVM optimizations and improvements. It consists of synthetic

benchmarks that allow developers to evaluate the application profile (e.g., compute-

intensive, database heavy, etc.) of their program. This allows the developers finer

control of the “shape” of their benchmarking applications. Nevertheless, it has the

drawback that, in some cases, these synthetic benchmarks are not representative of

real-world scenarios.

2.4.1.4 Renaissance Suite

The Renaissance benchmarking suite is a modern open-source benchmarking suite with

a wide range of benchmarks that have a particular focus on modern applications, i.e.,

applications that target specific Java paradigms (e.g., streams, lambdas, futures, etc.),

or common Java workload types [68–71]. Many of the workloads in the Renaissance

Suite are parts of common frameworks and familiar systems, i.e., Apache Spark, Java

Util Concurrent (JUC), databases (Java in-memory and Neo4J), Scala (compiler,

collections, ScalaSTM framework), Twitter Finagle, etc. [72–77].
2SPECjvm® and SPECjbb® are registered trademarks of Standard Performance Evaluation

Corporation (SPEC®)
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2.4.2 Perf

Perf, or Perf tools, is a set of Linux performance tools [78]. Perf gives access to

hardware and software performance counters at the Kernel level [79]. These counters

provide insight into running software’s: memory usage, cache misses, CPU cycles,

trace-points, and more. These capabilities lend Perf to being utilized for light-weight

performance profiling of Linux software systems [80]. Perf is a standard tool used for

evaluating JVM performance and identifying potential performance bottlenecks in a

managed runtime [81, 82].
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Chapter 3

Design of the AArch64 JVM and

TRJIT

This chapter discusses the various relevant components within the Eclipse OpenJ9

and Eclipse OMR repositories and the necessary design and implementation steps to

enable AArch64 platform support in OpenJ9 and OMR. OMR and the OpenJ9 JVM

already have runtime support for AArch64 in the form of interpretation, however, we

focus on improving this performance by implementing the JIT compiler. In Section 3.1,

we discuss the many challenges and opportunities that lie in porting the TRJIT

compiler in OMR and OpenJ9 to the AArch64 platform from the other existing

TRJIT compiler platforms. In Section 3.2, we discuss an overview of the different

phases of the TRJIT and its code generation.

3.1 From Port to Port

OMR’s, and by extension OpenJ9’s, TRJIT supports many underlying hardware and

operating system platforms. The x86 (64-Bit and 32-Bit) TRJIT compilers are in the

same source tree in OMR and are known as the X compiler(s) [83]. The Power PC
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(Big Endian—ppc64—and Little Endian—ppc64le)1 TRJIT compilers collectively are

known as the P compiler(s) in OMR [84, 85]. The System-Z/s390(x) TRJIT compiler

is known as the Z compiler in OMR [86].

There is also an ARM (32-Bit) TRJIT compiler that was ported from IBM SDK 8 to

OpenJ9 OpenJDK11 [87]. Our new 64-Bit ARMv8-A TRJIT compiler is known as

the AArch64 compiler in OpenJ9 and OMR [88].

A challenge we had is that there was no design and architecture up-front for bringing

AArch64 platform support to OMR, OpenJ9 and TRJIT. We created the design

ourselves in parallel to the implementation work; as the implementation progressed.

This provided the freedom for creativity and the capacity to emulate the best

constituent parts of each of the X, P, Z and 32-Bit ARM TRJIT compiler back-ends.

This also had the challenge that in some cases we had to choose between differing,

but equally appropriate and mutually exclusive, designs in the other (X, P, Z, etc.)

compilers for particular components. Some of these choices caused later component

designs to be eliminated. Often this resulted in an earlier design decision dictating

the choice for further design decisions. Some of these decisions in the design and

implementation were also dictated by hardware, software and Application Binary

Interface (ABI) in the AArch64 architecture. For these reasons differing designs

were not implemented to be compared amongst themselves. The different TRJIT

compilers and code generators (codegens) were written by different groups of people,

and so have very different coding styles [89, 90].

3.2 Eclipse OMR TRJIT Design

Figure 3.1 illustrates a high-level view of the phases of TRJIT. In the following we

provide a more detailed view of the different components and phases of TRJIT. The
1Endianness represents the ordering of bytes in computer memory and CPU registers [84].

Ordering in the form of most significant bytes in the smaller address to least significant is Big
Endian and the reverse is Little Endian.
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Figure 3.1: Overview of TRJIT Compiler Phases.

JVM takes in a bytecode and converts it to Intermediate Language (IL), which gets

passed into the TRJIT compiler (see Subsection 3.2.1 for more on the IL).

The first phase of TRJIT is the optimizer. Once the IL is optimized then it is

passed to the tree evaluators (see Subsection 3.2.2 for more on tree evaluation). Tree

evaluation evaluates the IL in concert with swapping out IL for opcode mnemonics

(see Subsection 3.2.4 for more on opcode mnemonics). Next the IL is handed off to

register assignment (see Subsection 3.2.6 for more on the infinite virtual register set

and register assignment). Finally, the opcodes in the IL are converted to platform-

native binary encoding to be handed off to the JVM for execution (see Subsection 3.2.5
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for more on binary encoding).

3.2.1 OMR Intermediate Language (IL)

There is a requirement for a common language to communicate the application’s

virtual instructions, from the user-facing language (e.g., Java) through to OMR; and

vice versa. For this purpose, OMR and TRJIT use an Intermediate Language (IL).

Methods or functions in the front-end language are converted into trees of OMR IL [91].

Listing 3.1 shows the virtual instructions for the arithmetic expression a = a−b
c

[91]

and Figure 3.2 illustrates the graphical representation for the corresponding IL tree.

1 n1 istore <a>

2 n2 idiv

3 n3 isub

4 n4 iload <a>

5 n5 iload <b>

6 n6 iload <c>

Listing 3.1: Virtual instruction representation of arithmetic expression: a = a−b
c

.

Each sub-operation (i.e., method) is grouped into a sub-tree, with operands being

the leaf nodes, and the root of the tree being called a treetop. OMR receives IL as

a stream of treetops that are processed sequentially. IL is usually generated by the

ILgen tool, either manually from the front-end language or via the JitBuilder API.

Each VM interacts differently with OMR in how it passes IL. Everything in a sub-tree

is, for the most part, self-contained. So in a limited manner, sub-trees represented

by treetops are handled flexibly. OMR optimizes the compilation of sub-trees by

controlling which treetops are processed first. In a controlled way, OMR reorders

the treetops without affecting the functional correctness of the user’s application. A

basic block is a code sequence that is self-contained with no branches except for the

entry and exit points [18]. This structure of OMR IL treetops is still related to basic

22



Figure 3.2: Graphical representation of the IL tree for the arithmetic expression:
a = a−b

c
.

blocks in VM/JIT nomenclature [18, 91]. The OMR IL basic block is extended in

that multiple nodes can be referenced multiple times [91].

3.2.2 OMR Tree Evaluators

The first main phase of the TRJIT compilation process is tree evaluation. The tree

evaluators operate on the stream of IL treetops. In this phase, the IL trees are

evaluated and converted into their virtual instruction forms (see Subsection 3.2.4).

This is a depth-first process starting at the leaf nodes and evaluating back up the

tree to the treetops. Each tree evaluator corresponds to some part of an OMR IL

operation. The deepest operations, or sub-operations are handled first as the values

of their arguments are already in place; as constants or as the results of operations in

previous treetops.

As there are many evaluators, for readability they are broken up into separate source
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files by operation type. For example, operations that take one argument (e.g., logical

operations) reside in the UnaryEvaluator file, operations that take two arguments

reside in the BinaryEvaluator file, operations that handle the control-flow of the

program source reside in the ControlFlowEvaluator file and operations that process

Floating-Point numbers reside in the FloatingPointEvaluators file, etc. [92–95]. Each

evaluator determines what kind of, and how many, virtual registers are required for the

operation. If existing virtual registers from previous/sub-operations can be re-used,

they are re-used to reduce overhead. However, if preexisting virtual registers are not

available, then a new virtual register is allocated at this time (see Subsection 3.2.6

for more information in register allocation and re-use).

Once the virtual registers have been processed, the next step is to determine which

operation needs to be performed and which AArch64 virtual instruction/mnemonic

has to be assigned (see Subsection 3.2.4 for more information on opcode mnemonics).

Depending on the sizes of the arguments and the desired capacity of the return

type, different instructions are chosen. Once the appropriate instruction is chosen,

the tree evaluator applies this information, also known as code generation, to the

current/parent node in the IL tree on which this evaluator is operating.

Before returning, it is a convention for an evaluator (the parent node) to decrement

the “in-use” reference count of its child nodes. If a child node’s counter goes to 0,

then that child IL tree node is collected by TRJIT. It is against the convention for

an evaluator to decrement itself; the parent always decrements its children instead.

These tree evaluators are one of the main locations for optimizations: choice of virtual

instructions, number and types of virtual registers, how to generate the code, etc. all

have significant side-effects in terms of performance and overhead of the application

run. This makes evaluator implementation a key part of creating a performant

AArch64 TRJIT.

This tree evaluation process happens continuously for each operation/sub-operation
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passing the results up the tree from a parent node as a child for the calling evaluator.

Once the call chain returns to the treetop all of the necessary code to perform, this

sub-tree has been generated and the evaluation process commences again on the

subsequent treetop until the user’s program finishes execution.

We implemented a number of arithmetic, logical, control-flow and helper evalua-

tors [A12–A14, A16–A40].

3.2.2.1 OpenJ9 Overridden Tree Evaluators

The tree evaluators in TRJIT are front-end language (e.g., Java) agnostic. This

makes implementing a front-end language much easier in that one does not have to

re-implement the majority of evaluators for common operations. However, there may

be scenarios where knowing front-end language-specific semantics, one could develop

a particularly optimized tree evaluator.

For this purpose Eclipse OpenJ9 contains some of these overridden tree evaluators for

Java and hosts them in the J9TreeEvaluators file [96]. Another sub-set of evaluators

that do not live in OMR are those that are specific to the Java language [96]. Some

operations may be language specific and it does not make sense, or may not be

possible, to have a generic/language-agnostic version live in OMR. Some Java-specific

examples of evaluators that are overridden in OpenJ9 are synchronization, read/write

barriers and division checks (e.g., divide by 0 and Java exception handling in that

case) [96].

3.2.3 OMR Tril Tests

Tril tests (compilertriltest) is a testing framework within the OMR project that is

built on top of the GoogleTest unit testing framework [97–99]. Tril tests in OMR

became an important tool for our team to verify our implementation work. Tril tests

are front-end, language agnostic e.g., Java. They target the OMR IL directly, which
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enables us to directly test our AArch64 compiler’s Tree Evaluator implementation

(more on Tree Evaluators in Subsection 3.2.2) [100].

OMR also contains underlying platform-specific functional verification tests (fvtests),

which enable custom targeting and extreme specificity to the underlying compiler’s

platform (e.g., X, P, etc.) [101]. The downside of the fvtests framework is that a new

compiler would have to implement the totality of included tests specifically for that

platform (i.e., AArch64).

In contrast, tril tests enable us to use all of the existing platform-agnostic tests as an

existing functional metric for our AArch64 TRJIT implementation. Tril hooks into

an entry point, specific to the data types of the arguments and return type, in the

OMR test compiler used by the fvtests framework [101]. Tril generates tests in the

form of an IL tree and inserts the provided arguments. The Tril tests contain a series

of small C functions that are functionally equivalent to the TRJIT’s implementation

for the IL opcodes being tested. The arguments for the test are passed into both the

TRJIT entry point and the local C function. The return values are then compared

against each other for validity using a GoogleTest built-in equivalency function. If

the two values are equivalent, this Tril test is considered passed.

3.2.4 Instruction OpCode Mnemonics

For developer convenience, OMR and OpenJ9 provide human-readable mnemonics,

labels or virtual instructions, instead of using the raw AArch64 instructions or binary

encoding in the TRJIT compiler source. This makes the TRJIT code, especially

in the Tree Evaluators (see Subsection 3.2.2), much easier to read and write. The

ARMv8-A, AArch64, instruction set architecture (ISA) has its own mnemonics as

defined in the reference manual [102]. ARMv8-A overloads the same label many times

but differentiates the operation to perform by the types/sizes of the argument(s)

passed in.
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Some sample ARMv8-A instructions are shown in Listing 3.2 [102]. Here we see the

usage of ‘w’s and ‘x’s to indicate whether the operation is 32-bit or 64-bit, the first

for a 32-bit arithmetic add operation and the second for a 64-bit arithmetic add

operation [102, 103]. The two OMR opcode mnemonics seen in Listing 3.3 correspond

to the ARMv8-A instructions in Listing 3.2 [103].

1 ADD W0, W1, W2 // Add 32-bit registers

2 ADD X0, X1, X2 // Add 64-bit registers

Listing 3.2: ARMv8-A instruction mnemonics for 32-bit arithmetic add and 64-bit

arithmetic add operations.

1 addimmw // Add 32-bit integers

2 addimmx // Add 64-bit integers

Listing 3.3: OMR instruction mnemonics for 32-bit arithmetic add and 64-bit

arithmetic add operations.

We implemented the initial set of opcode mnemonics for the JVM [104, 105].

3.2.5 Binary Encoding

As discussed in Subsection 3.2.4, the AArch64 ISA and OMR uses mnemonics for

readability and writability during development. However, the ARMv8 CPU does not

execute these mnemonics directly; instead the CPU operates on binary encoding [102].

Binary encoding is the raw version of an instruction to be executed by the CPU [102].

In Listing 3.4 we see the binary encoding (in hexadecimal) for the same two 32-bit

arithmetic add and 64-bit arithmetic add operations seen in Listing 3.2 and Listing 3.3.

During the binary encoding processing phase of the TRJIT compiler, any necessary

registers containing the arguments for the corresponding operation, as well as the

register to store the return data and any options (e.g., how to handle any carrys in

the case of an arithmetic operation), or any relevant condition codes that should be

checked are masked (logical AND/OR-ed) into the 000000 (as seen in Listing 3.4)
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section of the binary encoding. This masking occurs before the instruction is sent to

the CPU for execution.

1 0x11000000, /* ADD addimmw */

2 0x91000000, /* ADD addimmx */

Listing 3.4: ARMV8-A binary encoding in OMR for 32-bit arithmetic add and 64-bit

arithmetic add operations.

We implemented the initial set of ARMv8-A binary encodings for the JVM [104, 105].

3.2.6 Infinite Virtual Register Set and Register Assignment

As mentioned in Subsection 3.2.2, during TRJIT’s tree evaluation phase, virtual

registers are allocated to hold the values of arguments and return values for an

operation. During this tree evaluation phase, care is taken to maximize reuse of

previously allocated registers. While evaluating the IL trees, TRJIT does not concern

itself with the number of available physical registers in the CPU of the underlying

platform. Instead, TRJIT utilizes the concept of an infinite virtual register set. TRJIT

allocates a pseudo-infinite number of virtual registers for the purpose of tracking and

holding arguments and return data.

However, the underlying architecture and platform contain a finite number of physical

registers. Usually this small set of physical registers is even further broken down into

even smaller sub-sets of general purpose registers (GPRs), floating-point registers

(FPRs) and more specialized registers like vector purpose registers (VPRs). After the

tree evaluation phase, OMR’s TRJIT performs the register assignment phase. TRJIT

takes these virtual registers and assigns them to physical registers on the system.

If TRJIT encounters a situation where there are no available physical registers of

an appropriate type (e.g., GPR, FPR, etc.), it spills the contents of an existing,

but not immediately required, register to the stack for storage to free up a register
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for the current operation. After the current operation has been completed, TRJIT

re-loads the value stored on the stack back into the register it came from to preserve

the previous state for future operations. We implemented the initial version of the

register assignment for AArch64 for the JVM [104, 105].
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Chapter 4

Evaluation of the AArch64 JVM

and TRJIT

In this chapter, we discuss the evaluation of the JVM on AArch64. In the sub-section

about the experimental setup (Section 4.1), we discuss the devices used and the

framework used for testing and benchmarking. In the final section, we discuss the

results of the evaluation of the JVM (Section 4.2).

4.1 Experimental Setup

We tested and benchmarked our work with AdoptOpenJDK’s OpenJDK11 OpenJ9

Early Access release (EA) 0.23, that contains our design and implementation [106,

107]. We performed benchmarking runs on OpenJ9’s AArch64 and x86-64 implemen-

tations, for comparison. The JVM command-line options used when running OpenJ9

are shown in Listing 4.1.

1 java -Xms2G -Xmx2G

Listing 4.1: Java command-line options used during OpenJ9 runs.

30



Table 4.1: Beelink BT3 Pro II x86-64 Mini PC specifications.
Graph Label x86-64
Manufacturer Beelink
Name BT3 Pro II Mini PC
Architecture x86-64
Core 4-core Intel X5-Z8350
Max Speed 1.92GHz
Locked Speed 1.44GHz
Cache L1-32KB L2-2MB
Memory 4GB DDR3@1600MHz

Table 4.2: Pine64 Rock64 A53-based AArch64 embedded device specifications.
Graph Label A53
Manufacturer Pine64
Name Rock64
Architecture ARMv8-AArch64
Core 4-core A53
Max Speed 1.5GHz
Locked Speed 1.5GHz
Cache L1-32KB L2-256KB
Memory 4GB DDR3@1600MHz

As previously mentioned, for industry standard benchmarks we are using DaCapo

(Subsection 2.4.1.1), SciMark (Subsection 2.4.1.2), SPECjvm®2008 (Subsection 2.4.1.3)

and Renaissance Suite (Subsection 2.4.1.4) on both AArch64 and x86-64.

Table 4.3: Khadas VIM3 big.LITTLE A73/A53-based AArch64 embedded device
specifications.

Graph Label A73
Manufacturer Khadas
Name VIM3
Architecture ARMv8-AArch64
Core 4x A73-2x A53
Max Speed A73-2.2GHz A53-1.8GHz
Locked Speed 1.48GHz
Cache L1-32KB L2-1MB (shared)
Memory 4GB DDR4@3200MHz

31



Table 4.4: Raspberry Pi 4 B A72-based AArch64 embedded device specifications.
Graph Label A72
Manufacturer Raspberry Pi
Name 4 B
Architecture ARMV8-AArch64
Core 4x-core A72
Max Speed 1.5GHz
Locked Speed 1.5GHz
Cache L1-48KB L2-1MB (shared)
Memory 8GB DDR4@3200MHz

4.1.1 The Devices

The devices in Tables 4.1 to 4.4 are used for the development, testing, debugging and

benchmarking in this thesis.

• The Beelink BT3 Pro II Mini PC is an x86-64-based device running at 1.92GHz

on the Debian OS with Kernel version 5.7.10-1. The reason an x86-64 mini

PC is included in the devices and results is to provide a comparison to a more

mature Interpreter and JIT implementation in the OpenJ9 JVM.

• The Pine64 Rock64 is an A53-based device running at 1.5GHz on the Arch

Linux ARM OS with Kernel version 5.3.8-2-ARCH.

• The Khadas VIM3 is a device using 4x A73 cores and 2x A53 cores in a

big.LITTLE configuration running at 2.2 GHz (A73) and 1.8 GHz (A53) on

the Debian OS with Kernel version 5.5.0-rc2 [108–110]. Of note, the SoC in

the VIM3 is equivalent to the ODROID-N2 board with 4GB of RAM.

• The Raspberry Pi 4 B is an A72-based device running at 1.5GHz on the Ubuntu

20.04.1 LTS OS with Kernel version 5.4.0-1025-raspi.

Running our experiments on a variety of devices gives us greater insight into our

results. We are looking at an x86-64 board, which has comparable specifications

to the AArch64 boards, to be able to see how the AArch64 JIT in its current
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state performs against the more mature x86-64 JIT. Having the Rock64, VIM3

and Raspberry Pi 4 B gives us a wide spectrum of examples of different AArch64

architecture implementations. The Rock64 gives us a good example of a low power

(A5x) device. The Raspberry Pi 4 B gives us a good example of a high performance

(A7x) device. The VIM3 gives us a good example of a big.LITTLE heterogenous core

implementation.

Sometimes, depending on the device, manufacturers or integrators undervolt, or

underclock, the CPUs and sometimes they overvolt, or overclock, the CPUs. This

makes it hard to compare one board against another in an “apples to apples” manner.

However, by locking the speeds (see Subsection 4.1.2), we reduce the variance in CPU

clock speeds for comparable results.

The devices we use for benchmarking have the same capacities of RAM at 4GB

(except for the Raspberry Pi 4 B, which has 8GB), but differing RAM speeds. This

difference in the total size of memory could affect the benchmarking results if we fail

to control the amount of RAM that the Java processes are able to use. Therefore, to

mitigate this issue we have locked the JVM to only be able to use 2GB of heap via

the -Xms and -Xmx Java command-line arguments (see Listing 4.1). The Beelink

and the Rock64 have DDR3 RAM at 1600MHz. The VIM3 and the Raspberry Pi 4 B

have DDR4 RAM at 3200MHz. This certainly could affect a direct comparison, but

is interesting to give a comparison between low-power vs. high-performance devices.

4.1.2 The Benchmarking and Testing Framework

We created our own benchmarking and testing framework for ease of maintainability,

reproducibility, finer granularity of control of individual benchmark options and to

allow for quick benchmarking setup across disparate devices [19–21]. This framework

handles gathering of the individual benchmarks (DaCapo, SciMark, SPECjvm®2008

and the Renaissance Suite). It also handles the acquisition of a number of dependencies
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to run and test the OpenJ9 JIT on the aforementioned platforms.

Another important responsibility this framework handles, for comparability, is locking

each different device’s CPU frequency to a value that affords comparison. The

framework has a main driver script that allows the execution of each benchmark serially.

Once benchmarks have run, the framework then handles parsing and aggregating

results in a layout that enables ease of analysis and graphing [111, 112].

4.2 Experimental Evaluation

As previously mentioned, in this thesis we look at benchmarking results from the

Beelink (Table 4.1), Rock64 (Table 4.2), VIM3 (Table 4.3) and Raspberry Pi 4 B (Ta-

ble 4.4) devices. We examine results from the DaCapo (Figure 4.1), SPECjvm®2008

(Figure 4.2), SPECjvm®2008 Startup (Figure 4.3), SPECjvm®2008 SciMark (Fig-

ure 4.4) and Renaissance Suite (Figure 4.5) benchmarks that were gathered using

the aforementioned benchmarking and testing framework (see Subsection 4.1.2).

All of the results and graphs in Subsection 4.2.1, Subsection 4.2.2 and Appendix B

are using the OpenJ9 0.23 release JVM. The devices labled A53, A72 and A73 are

running OpenJ9 with our AArch64 TRJIT design and implementation; whilst the

device labled x86-64 is running the existing X platform’s TRJIT implementation.

The AArch64 JVM and TRJIT being evaluated in this thesis is an early access release

that is rapidly progressing toward a production release, and as such only performs

some code optimizations. There are a number of more advanced optimizations and

performance enhancements for the JVM that are yet to be implemented, which

the x86-64 JVM already contains. Some of these outstanding optimizations and

performance features to be implemented include inlined array copies, improved SIMD

(Single Instruction Multiple Data) support and the usage of a dynamic polymorphic

inline cache (PIC) for interface dispatches. Chapter 5 lays out some of these items as
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a part of future work.

4.2.1 Results

The overall theme for DaCapo, SPECjvm®2008 and SciMark has the A73 outper-

forming everything else because it is the stronger core. In the DaCapo benchmark

from Figure 4.1, the performance of the A73 based machine often matched or per-

formed better than its x86-64 counterpart. DaCapo benchmarks are memory bound,

leading to much better performance when the memory frequency is higher, as in the

VIM3 case [68]. The same behaviour with memory bound benchmarks is displayed in

the SPECjvm®2008 SciMark large subset; the small subset exercises cache and CPU

speed more specifically (Figure 4.2).

The A7x cores perform better in all benchmarks (Figures 4.1 to 4.5) compared to

their A53 counterparts. This hierarchy can be attributed to the better class of A7x

processors. The A73 core outperforms all other boards in the DaCapo benchmark,

aside from h2 where the x86-64 device takes the lead (Figure 4.1). This reversal can

be attributed to more advanced hardware overall support in the x86-64 JVM.

There are outliers in the compression and crypto workloads as OpenJ9 on AArch64

is currently using a software implementation rather than hardware support built into

the architecture for crypto opcodes. This coupled with differing implementations of

the architecture in each core could explain these results.

The mpegaudio workload is also an outlier. This could be attributed to the heavy

usage of floating-point up codes and the fact that vectorization is not implemented

in the VM.

Xml.validation is also an outlier in that the x86-64 takes the lead over all of the Axx

cores. This can be attributed to the fact that this workload relies on moving large

amounts of data around and so not having inline arrayCopy support implemented is

having a large impact here.
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Figure 4.1: DaCapo elapsed time relative to x86-64 device comparison for OpenJ9
0.23 (Log10, negative is better).
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Figure 4.2: SPECjvm®2008 elapsed time relative to x86-64 device comparison for
OpenJ9 0.23 (Log10, negative is better).
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Figure 4.3: SPECjvm®2008 startup elapsed time relative to x86-64 device comparison
for OpenJ9 0.23 (Log10, negative is better).

38



Figure 4.4: SciMark elapsed time relative to x86-64 device comparison for OpenJ9
0.23 (Log10, negative is better).
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Figure 4.5: Renaissance Suite elapsed time relative to x86-64 device comparison for
OpenJ9 0.23 (Log10, negative is better).
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The VIM3 and Raspberry Pi 4 B boards outperform all other platforms in most

benchmarks in startup (Figure 4.3). This can be accounted for by faster memory

speeds (DDR4) and faster disk speeds (150MB/s). Here we see some of the same

outliers as in the full-run SPECjvm®2008 workloads with the reversal of the compress

workload. This can be attributed to the aforementioned faster disk speeds that cause

faster access to the file to compress and the output of the compressed file during the

startup phase, compared to the disk speeds being throttled on a full run.

Monte-Carlo, in Figure 4.4, still proved problematic with the A73 board and is to be

explored further in future research (see Chapter 5). However, one speculative theory

on why we see the results we do for Monte-Carlo could be that the performance limits

of the existing floating-point support in the AArch64 JVM are being reached. It

could be that this benchmark could benefit from implementing vectorization (SIMD)

support in the VM.

In contrast to DaCapo, SPECjvm®2008 and SciMark, the more real-world Renaissance

Suite of benchmarks shows the same x86-64 device beating out the A7x cores in

all benchmarks (Figure 4.5). As the other benchmarks are more synthetic, and the

Renaissance Suite is intended to show production application performance, the more

mature x86-64 JVM shows better real-world application performance. As these are

more modern workloads, this difference can also be attributed to support for the

more modern Java language constructs in the AArch64 JVM being less mature than

that of the x86-64. This also could be reflected in that many of the Renaissance

workloads are focused on cloud applications. The scala-doku workload has a slight

outlier in that the A72 and A73 trend is reversed here. Speculating, this could be

caused by the lack of floating-point/vectorization support combined with a lack of

inline arrayCopy support in the AArch64 JVM (see Chapter 5).

To reiterate all of the results and graphs in this subsection running on an Axx

device are using the OpenJ9 0.23 release JVM with our AArch64 TRJIT design
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and implementation. The device labeled x86-64 is running the existing X platform’s

TRJIT implementation. To summarize, the x86-64 beats all other cores 46% of

the time. This is a large portion because the x86-64 JVM is a much more mature

implementation. The remaining 53% of the time our AArch64 JVM beats out x86-64

on an Axx core in the majority of workloads. Of that, 83% of the time the A73 core

beats all the other Axx cores. The remaining 17% is the A72 core. At an astounding

0%, the A53 fails to take any top result across the totality of the sub benchmarks.

This stark contrast in A7x vs. A5x can be attributed to the A7x line of cores being

more advanced and powerful across the board.

In Subsection 4.2.2 we will take a more granular look at the AArch64 JVM to see if

we can identify bytecodes that may be the root of some of the outliers identified in

this section.

4.2.2 Bytecode Granularity Benchmarking

The benchmarks in Subsection 4.2.1 provided much insight into the workings of

the JVM and TRJIT and suggest some of the potential performance deficiencies.

However, these benchmarks operate at a higher level of granularity. To acquire more

insight at a finer-level of granularity, we use a retrofitted version of the microjit-tests

framework, developed by our colleagues at CAS-Atlantic on the MicroJIT team [56,

58, 113].

The MicroJIT is a lightweight, template-based, JIT compiler designed to bridge the

gap during JVM startup when TRJIT has not yet started compiling methods or

gathering profiling data [56, 58, 113]. This framework is utilized for the MicroJIT

project to perform testing on how individual Java bytecodes are compiled by MicroJIT.

Their goal is to validate and verify the functional correctness of the MicroJIT-compiled

native code. Our goal is not the same as we have other ways of performing functional

verification (e.g., tril tests and fvtests Subsection 3.2.3) that are more appropriate
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Figure 4.6: Bytecode Branch Tests (1,000,000 iterations).

for the TRJIT. We opt to use the microjit-tests framework to aid in a finer-grain

performance investigation, hence we retrofitted it. We modified the microjit-tests

framework to drive increased application load on a bytecode-by-bytecode basis. The

goal of this method is to more directly demonstrate which bytecodes, and therefore

which OpenJ9 and OMR IL opcodes and evaluators, warrant investigation for further

optimization.

The overall trend is that bytecodes on one platform perform the same relative amount

on the others, with few exceptions, as can be seen in Figures 4.6 to 4.13.

In Figure 4.12 we see the long tests have outliers in the division, and shift bytecodes.

The division outlier can be attributed to the way we are handling the special cases

(e.g., divide by 0 exception handling) of division in the division evaluator. The shift

outliers are interesting as there is no obvious reason for the evaluator to be slower
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Figure 4.7: Bytecode Conversion Tests (1,000,000 iterations).
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Figure 4.8: Bytecode Double Tests (1,000,000 iterations).

on AArch64 aside from not implementing hardware support. This not the case in

the integer tests seen in Figure 4.10, further investigation is required. However, one

speculative theory is that our long shift evaluator could be a good candidate for

improvement if it is not as efficient as the integer shift evaluator.

As anticipated, in Figures 4.6 to 4.11 and 4.13 the relative performance between

boards and between AArch64 and x86-64 results are comparable.

These small number of outliers identified in these bytecode granularity tests will

be investigated further and cross-referenced with results from Linux Perf tools

(see Chapter 5) to identify their source. However, some speculative theories on

possible causes for these outliers have been put forward inline above where they have

come up, and future work (Chapter 5) will investigate and confirm these speculations.

The raw data corresponding to Figures 4.6 to 4.13 can be seen in Tables 6.1 to 6.8

from Appendix B.

Overall, this early access release of the OpenJDK11 OpenJ9 JVM shows great promise

while it is progressing towards a full release. We are currently working on identifying
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Figure 4.9: Bytecode Float Tests (1,000,000 iterations).

and improving upon further performance deficiencies. By the time of the full release,

the performance of the AArch64 JVM will only be improved over these baseline

results.

4.3 Templating New Architectural Support

Aside from implementing the AArch64 JVM and TRJIT and putting in place a

baseline set of benchmarking results, another goal of our work is to put forward

a template that allows others to follow the AArch64 model for new architectures.

Depending on the similarities in the ISAs (Instruction Set Architectures) between

AArch64 and the target, a large amount of the code generator, and particularly the

tree evaluators, could be used as a very close template for a new architecture. All of

the previously existing Tril tests and those that we implemented can be used as an

excellent metric for when a new architecture’s tree evaluators are functioning properly.
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Figure 4.10: Bytecode Int Tests (1,000,000 iterations).
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Figure 4.11: Bytecode Invoke Tests (1,000,000 iterations).
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Figure 4.12: Bytecode Long Tests (1,000,000 iterations).
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Figure 4.13: Bytecode Stack Tests (1,000,000 iterations).

A new architecture’s JVM implementation can use our added Tril tests as a template

for any new tests the target architecture requires. Keeping in mind the design of

the OpenJ9 JVM and OMR itself requires a number of disparate components to be

implemented and connected before any functional and performance testing is possible.

This implies there will be a long initial period of implementation where any concrete

manner of verification is limited. It is recommended following the implementation

of an existing architecture closely to minimize debugging and rework once all the

components are connected.

A strong recommendation would be to gain access to a reliable and performant

hardware platform as early as possible, in the target architecture, which can support

native building, testing and benchmarking of OpenJ9 and OMR. This was a bottleneck

for our efforts as we started with no hardware and required cross-compilation from

x86-64 and then ARMv8-A emulation with QEMU on x86-64. In these cases, build
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times were 3-4× longer than those we have currently attained and test runs were

2-3× longer as well. Finally, we were able to acquire physical hardware to test on,

the Rock64 (Table 4.2) however, the device was not powerful enough to support

building so we still had to cross-compile or emulate the environment for building

and then side-load the binaries and libraries onto the device. The Rock64 did enable

us to perform initial testing, which brought down that overhead to 2× of what we

now have. It wasn’t until we acquired the VIM3 (Table 4.3), and subsequently

the Raspberry Pi 4 B (Table 4.4), devices that we significantly brought our build

times down and further reduced our testing and benchmarking times as can be seen

in Subsections 4.2.1 and 4.2.2.

Making use of our benchmarking and testing framework (Subsection 4.1.2) for ease

of generating reproducible and reliable results would be beneficial in speeding up

the benchmarking process. This strategy also offers the ability to more easily see

incremental improvements between implementation tasks or optimizations. Using

the AArch64 baseline results provided here as a metric of a newer and younger JVM

implementation for first comparisons would be beneficial. The X, P and Z JVM

implementations are more mature and so are more highly optimized with hundreds

of developer hours of performance optimizations. This makes results from initial

benchmarking runs on a new architecture harder to compare against the X, P and Z

JVMs. However, the AArch64 implementation is still in progress so would provide

for a more reasonable initial comparison.
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Chapter 5

Future Work

All of the benchmarks in Subsection 4.2.1, while extremely useful in providing a direct

comparison, are at a higher level of granularity, in that they suggest potential causes

of performance bottlenecks. These high-level benchmarks can identify likely causes,

and general areas, of performance issues; however, they cannot directly pinpoint

causes of performance deficiencies alone. There are two methods we foresee that are

promising, aside from that described in Subsection 4.2.2, to perform a deeper dig

into the causes of the aforementioned bottlenecks:

• Using Linux Perf tools (Subsection 2.4.2) a deeper-dive into JVM performance

and further identification of potential bottlenecks and optimizations would be

possible. Perf gathers sampling data of JVM functions and pieces of JIT-ed code

where the JVM spends the bulk of its execution time, thus providing information

on which areas of the code should be targeted for further improvement.

• Previously in Subsection 3.2.3 we presented the Tril tests. Related to the

previous Perf suggestion, another idea is to hook into the tril tests in OMR and

insert Linux Perf profiling. This setup would enable us to do a deep dive into the

OMR IL (Intermediate Language) opcode evaluators in the JIT. The downside

of this method is, as the tril tests are only in OMR and exclude OpenJ9, we
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would only see the performance of the language-generic opcodes in this case;

not any of the overridden opcodes and evaluators that are Java-specific. No

doubt this would be an interesting data point, nevertheless, as it would provide

more insight into the OMR half of the JIT’s performance.

Another item for future work is ARM advanced SIMD (Single Instruction Multiple

Data) capabilities. This SIMD support is currently unexploited in the AArch64 JVM

and vectorized/scalar support in TRJIT will greatly improve overall performance.

Exploiting vectorized loads and stores could vastly improve data movement speeds.

By increasing these speeds, we can improve the overall performance of end user’s

applications.

Furthermore, the AArch64 ISA offers cryptographic support, which can improve the

performance of the VM when used in security-sensitive applications. OpenJ9 makes

use of software-side cryptographic libraries (e.g., OpenSSL). By leveraging ARMv8-A

hardware support directly in TRJIT, this in-software implementation’s performance

could be enhanced even more.

Exploiting big.LITTLE architectures such as the VIM3 can further improve power

usage and the overall performance of the JVM. Having the JVM aware of the

heterogeneous cores available will be invaluable as it would allow the background

tasks—garbage collector threads, busy-wait, etc.—to be handled by the little cores.

By satisfying the background tasks with the little cores, the JVM can prioritize an

end user’s application threads to the big cores.

Finally, implementing native/inline arraycopy support is currently unsupported in

the AArch64 JVM. Inline arraycopy support improves the movement of large Java

arrays. Providing this capability to the JVM will increase performance in end-user

applications with many large arrays.
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Chapter 6

Conclusion

Overall, we have shown that the AArch64 platform lends itself as an ideal environment

for the OpenJ9 JVM. To reiterate our contributions from Section 1.1, in this thesis, we

focused on bringing Eclipse OpenJ9 and Eclipse OMR’s Just-in-Time (JIT) compiler

to the AArch64 platform. More specifically, we brought an AArch64-specific design

and implementation to OpenJ9 and OMR.

We implemented a build (Make and CMake) infrastructure [A1–A3]. We added

AArch64 platform support in the Port Library to the JVM [A4]. We implemented

the base state of the code generator; including: AArch64 binary encoding [A5–A7],

ARMV8-A opcode mnemonics [A5, A7–A9], AArch64 GCMaps [A10], AArch64 pro-

cessor information [A11], ARM64 tree evaluators [A12–A40], TRJIT code generator

helper functions for AArch64 [A41, A42], expanded the set of Tril tests [A43–A47],

trampoline support for AArch64 [A48, A49], store/load/full/allocationFence for

AArch64 [A50] and Unsafe_compareAndSwapInt_jlObjectJII_Z for AArch64 [A51].

We expanded (Renaissance Suite) and refined the benchmarking and testing frame-

work framework (discussed in Subsection 4.1.2) [19–21]. We provided an evaluation

and validation of the AArch64 implementation of the JIT against a more mature

architecture (shown in Subsection 4.2.1). This evaluation revealed performance dis-
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crepancies and optimization opportunities by comparing the AArch64 implementation

to the x86-64 implementation. We designed and implemented the AArch64 JIT from

scratch using the other platforms’ compilers as templates. This required us to make

many decisions on how to architect and implement the AArch64 solution. These

decisions were explored in Section 3.1. Our work was an effort to provide a template

for new architectural support to allow others to follow our model when targeting new

architectures. This was explored in Section 4.3.

To summarize the novelty of this research, we brought AArch64 support to the Eclipse

OpenJ9 JVM, Eclipse OMR and the TRJIT. This allows for an enterprise-grade

AArch64 JVM for ARMv8-A devices, desktops and servers. A specific example of an

excellent use for our contributions in this research is the ever increasingly popular

Apple Silicon M1 chip in the MacBook Pro laptop and Mac Mini desktop [23]. We

began our research and development of the AArch64 JVM and TRJIT implementation

well before the M1 chip was launched in 2020 [23]. We had the foresight to see that

this platform and architecture would be extremely important going forward and the

market is confirming this.

We have shown that in most cases the A7x cores display comparable, or better

performance than their x86-64 counterpart. While the A53 core provides lower

performance, these results provide insight into the possible performance provided

by entry level CPUs coupled with a highly performant runtime. The A72 core’s

performance lies in between the A73 and A53 cores. The ARM offerings display great

flexibility, and the ability to utilize these resources, improving the infrastructure.

We endeavoured in Subsection 4.2.2 to take a more granular look at the bytecode level

to more directly identify which bytecodes should be optimized. While we identified

a few outlier cases that will be investigated further with Linux Perf tools, overall

this deeper dive did not have the desired effect of directly identifying performance

deficiencies observed in Subsection 4.2.1.
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We laid out a number of future work items in Chapter 5 to delve deeper into which

parts of the TRJIT can be further optimized.

In conclusion, this work lays out a baseline for the comparison, evaluation and analysis

of future implementations and optimizations in the JVM on the AArch64 platform.
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Appendix B

In this appendix we see the raw data for Figures 4.6 to 4.13.

Table 6.1: Branch bytecode test execution time in milliseconds for 1,000,000
iterations.

ByteCode Test Beelink Pi 4 B VIM3 Rock64

BranchTests.gotoTest<I>I 143722 155616 132086 224392

BranchTests.ifeqTest<I>I 144920 153990 139384 224631

BranchTests.ifgeTest<I>I 144999 158315 143370 223300

BranchTests.ifgtTest<I>I 144287 155393 143564 223354

BranchTests.if_icmpeqTest<I>I 143084 159884 132567 222706

BranchTests.if_icmpgeTest<I>I 145103 153247 137649 223089

BranchTests.if_icmpgtTest<I>I 145735 155272 140791 224736

BranchTests.if_icmpleTest<I>I 143392 152804 145350 223700

BranchTests.if_icmpltTest<I>I 144612 157800 129658 224068

BranchTests.if_icmpneTest<I>I 142726 155716 139822 223118

BranchTests.ifleTest<I>I 144754 153628 142469 222908

BranchTests.ifltTest<I>I 142969 157963 135078 222646

BranchTests.ifneTest<I>I 142033 158155 136419 223868
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Table 6.2: Conversion Branch bytecode test execution time in milliseconds for
1,000,000 iterations.

ByteCode Test Beelink Pi 4 B VIM3 Rock64

ConversionTests.d2f<D>F 283559 309913 275882 440327

ConversionTests.d2i<D>I 356182 389037 335671 552814

ConversionTests.d2l<D>J 319962 340984 307566 501176

ConversionTests.f2d<F>D 177519 190940 168473 278146

ConversionTests.f2i<F>I 812459 884343 802588 1275244

ConversionTests.f2l<F>J 703507 760204 708348 1104660

ConversionTests.i2b<I>B 143283 155035 139284 222945

ConversionTests.i2c<I>C 143993 153904 153692 223099

ConversionTests.i2d<I>D 143728 152689 149378 226809

ConversionTests.i2f<I>F 177911 190677 186756 278076

ConversionTests.i2l<I>J 143708 156822 150359 223179

ConversionTests.i2s<I>S 213320 230154 208303 334584

ConversionTests.l2d<J>D 144176 155728 135456 224105

ConversionTests.l2f<J>F 251188 284447 246668 392678

ConversionTests.l2i<J>I 144764 154601 137375 224506
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Table 6.3: Double Branch bytecode test execution time in milliseconds for
1,000,000 iterations.

ByteCode Test Beelink Pi 4 B VIM3 Rock64

DoubleTests.add<DD>D 879906 1000976 874697 1406823

DoubleTests.dcmpg<DD>I 674880 Segfault Segfault Segfault

DoubleTests.dcmpl<DD>I 633950 Segfault Segfault Segfault

DoubleTests.dconst_0<>D 38034 51372 36461 58551

DoubleTests.dconst_1<>D 38059 57574 37618 57932

DoubleTests.div<DD>D 846622 965744 819346 1341265

DoubleTests.mul<DD>D 599381 677084 600401 943628

DoubleTests.neg<D>D 320719 358474 327917 497798

DoubleTests.rem<DD>D 1688491 1903972 1664926 2702425

DoubleTests.sub<DD>D 636115 681128 623854 993272

Table 6.4: Float Branch bytecode test execution time in milliseconds for
1,000,000 iterations.

ByteCode Test Beelink Pi 4 B VIM3 Rock64

FloatTests.add<FF>F 883255 1014585 842158 1385740

FloatTests.div<FF>F 847488 981002 822564 1337910

FloatTests.fcmpg<FF>I 568092 Segfault Segfault Segfault

FloatTests.fcmpl<FF>I 533441 Segfault Segfault Segfault

FloatTests.fconst_0<>F 38109 57723 35853 59467
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FloatTests.fconst_1<>F 38475 43614 34677 59138

FloatTests.fconst_2<>F 38399 40430 35758 59194

FloatTests.mul<FF>F 603363 650832 569338 938556

FloatTests.neg<F>F 284895 303764 270478 441414

FloatTests.rem<FF>F 1696310 1869537 1625641 2679360

FloatTests.sub<FF>F 710487 774624 678572 1104647

Table 6.5: Int Branch bytecode test execution time in milliseconds for 1,000,000
iterations.

ByteCode Test Beelink Pi 4 B VIM3 Rock64

IntTests.add<IIII>I 178675 192119 168575 280960

IntTests.add<III>I 179160 190984 168139 278341

IntTests.add<II>I 178862 195031 169047 280807

IntTests.and<II>I 250412 275892 239372 389025

IntTests.bipush_31<>I 38788 41187 37457 60217

IntTests.bipush_m32<>I 38459 40982 33698 59669

IntTests.div<II>I 299946 306162 283743 444802

IntTests.iconst_0<>I 38790 41109 34089 60059

IntTests.iconst_1<>I 38476 42404 35917 59755

IntTests.iconst_2<>I 39248 41133 38560 60518

IntTests.iconst_3<>I 39400 41206 36878 59654
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IntTests.iconst_4<>I 37978 40699 36230 60002

IntTests.iconst_5<>I 39223 41634 38531 60128

IntTests.iconst_m1<>I 39149 40928 39198 60313

IntTests.inc<I>I 213409 231773 208442 334504

IntTests.mul<II>I 287793 305710 268191 441619

IntTests.neg<I>I 250850 270808 241579 389269

IntTests.or<II>I 251415 272416 245037 388274

IntTests.rem<II>I 367647 386494 333039 550949

IntTests.shl<II>I 496137 532556 482919 770044

IntTests.shr<II>I 674273 718640 635424 1044989

IntTests.sipush_32767<>I 38152 40993 36015 59989

IntTests.sipush_m32768<>I 37725 40632 38829 59780

IntTests.sub<II>I 213743 236175 205847 331214

IntTests.ushr<II>I 667923 721871 650730 1047103

IntTests.xor<II>I 251844 268536 244926 389357

Table 6.6: Invoke Branch bytecode test execution time in milliseconds for
1,000,000 iterations.

ByteCode Test Beelink Pi 4 B VIM3 Rock64

InvokeTests.indirectAdd<III>I 356148 390046 331646 553759

InvokeTests.indirectAdd<II>I 354774 382597 344659 552858
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InvokeTests.indirectAdd<IIJ>J 354018 380093 345078 552297

InvokeTests.indirectAdd_<JII>I 354125 380071 338045 555465

InvokeTests.indirectAdd<JII>J 355115 386159 334625 554474

InvokeTests.indirectDAdd<DD>D 1763919 1884931 1692839 2774904

InvokeTests.indirectDiv<II>I 542328 570017 500133 826913

InvokeTests.indirectFAdd<FF>F 1763447 1944323 1696768 2756988

InvokeTests.indirectLAdd<JJ>J 493998 533256 478922 773461

InvokeTests.indirectMul<II>I 565839 612995 558944 888550

InvokeTests.indirectSub<II>I 423602 454601 408694 661629

Table 6.7: Long Branch bytecode test execution time in milliseconds for
1,000,000 iterations.

ByteCode Test Beelink Pi 4 B VIM3 Rock64

LongTests.add<IIJ>J 180024 192780 172344 279245

LongTests.add_<JII>I 180690 190548 167216 280323

LongTests.add<JII>J 178238 194834 167247 498516

LongTests.add<JJJ>J 179676 193432 170784 283054

LongTests.add<JJ>J 319976 339090 312492 278721

LongTests.and<JJJ>J 37441 39925 35628 498766

LongTests.and<JJ>J 321089 347356 309127 57800

LongTests.div<JJ>J 440858 456323 403834 662488
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LongTests.lcmp<JJ>I 318488 353426 307286 498776

LongTests.lconst_0<>J 38948 41613 34166 59895

LongTests.lconst_1<>J 38746 40695 37356 59023

LongTests.mul<JJ>J 320857 347299 307054 501981

LongTests.neg<J>J 284388 302332 268611 441308

LongTests.or<JJ>J 323674 348179 310483 500520

LongTests.rem<JJ>J 371273 381680 341043 553272

LongTests.shl<JI>J 457375 493765 437809 718963

LongTests.shr<JI>J 666710 731162 638416 1054633

LongTests.sub<JJ>J 319419 353125 307234 497396

LongTests.ushr<JI>J 671048 728577 646922 1046495

LongTests.xor<JJ>J 320123 344408 316156 500158

Table 6.8: Stack bytecode test execution time in milliseconds for 1,000,000
iterations.

ByteCode Test Beelink Pi 4 B VIM3 Rock64

StackTests.dup2Form1<II>I 144487 157293 134831 225492

StackTests.dup2Form2<JJ>J 144850 154280 136717 226834

StackTests.dup2_x1Form1<III>I 143579 155192 136149 223406

StackTests.dup2_x2Form2<IIJ>J 144528 158962 134640 224693

StackTests.dup2_x2Form3<JII>I 143841 159613 141168 225564
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StackTests.dup2_x2Form4<JJ>J 144779 156306 133346 226486

StackTests.dup<II>I 144434 155238 137656 223360

StackTests.dup_x1<II>I 143032 154993 137980 225435

StackTests.dup_x2Form1<III>I 143397 152278 145766 226180

StackTests.dup_x2Form2<JI>I 144453 156448 140599 224539

StackTests.pop2<J>V 177357 188822 149595 273210

StackTests.pop<I>V 142239 157291 112990 219933

StackTests.swap<III>I 141418 153663 104147 219530
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